BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 18053734)

  • 1. Expression and functional analysis of aspartate transcarbamoylase and role of de novo pyrimidine synthesis in regulation of growth and development in Arabidopsis.
    Chen CT; Slocum RD
    Plant Physiol Biochem; 2008 Feb; 46(2):150-9. PubMed ID: 18053734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of phosphate limitation on expression of genes involved in pyrimidine synthesis and salvaging in Arabidopsis.
    Hewitt MM; Carr JM; Williamson CL; Slocum RD
    Plant Physiol Biochem; 2005 Feb; 43(2):91-9. PubMed ID: 15820655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of resistance of variants of the Lewis lung carcinoma to N-(phosphonacetyl)-L-aspartic acid.
    Kensler TW; Mutter G; Hankerson JG; Reck LJ; Harley C; Han N; Ardalan B; Cysyk RL; Johnson RK; Jayaram HN; Cooney DA
    Cancer Res; 1981 Mar; 41(3):894-904. PubMed ID: 7459875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterospecific cloning of Arabidopsis thaliana cDNAs by direct complementation of pyrimidine auxotrophic mutants of Saccharomyces cerevisiae. I. Cloning and sequence analysis of two cDNAs catalysing the second, fifth and sixth steps of the de novo pyrimidine biosynthesis pathway.
    Nasr F; Bertauche N; Dufour ME; Minet M; Lacroute F
    Mol Gen Genet; 1994 Jul; 244(1):23-32. PubMed ID: 8041358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uracil nucleotide synthesis in a human breast cancer cell line (MCF-7) and in two drug-resistant sublines that contain increased levels of enzymes of the de novo pyrimidine pathway.
    Karle JM; Cowan KH; Chisena CA; Cysyk RL
    Mol Pharmacol; 1986 Aug; 30(2):136-41. PubMed ID: 2874477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of feedback inhibition and sequential firing of active sites in plant aspartate transcarbamoylase.
    Bellin L; Del Caño-Ochoa F; Velázquez-Campoy A; Möhlmann T; Ramón-Maiques S
    Nat Commun; 2021 Feb; 12(1):947. PubMed ID: 33574254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De novo pyrimidine nucleotide synthesis mainly occurs outside of plastids, but a previously undiscovered nucleobase importer provides substrates for the essential salvage pathway in Arabidopsis.
    Witz S; Jung B; Fürst S; Möhlmann T
    Plant Cell; 2012 Apr; 24(4):1549-59. PubMed ID: 22474184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyrimidine biosynthesis in Pseudomonas oleovorans.
    Haugaard LE; West TP
    J Appl Microbiol; 2002; 92(3):517-25. PubMed ID: 11872128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of pyrimidine biosynthesis in Pseudomonas cepacia.
    West TP; Chu CP
    Arch Microbiol; 1990; 154(4):407-9. PubMed ID: 2173896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light-Inducible MiR163 Targets PXMT1 Transcripts to Promote Seed Germination and Primary Root Elongation in Arabidopsis.
    Chung PJ; Park BS; Wang H; Liu J; Jang IC; Chua NH
    Plant Physiol; 2016 Mar; 170(3):1772-82. PubMed ID: 26768601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of the pyrimidine biosynthetic pathway in Pseudomonas mucidolens.
    West TP
    Antonie Van Leeuwenhoek; 2005 Aug; 88(2):181-6. PubMed ID: 16096695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptional reprogramming of nucleotide metabolism in response to altered pyrimidine availability in Arabidopsis seedlings.
    Slocum RD; Mejia Peña C; Liu Z
    Front Plant Sci; 2023; 14():1273235. PubMed ID: 38023851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyrimidine synthesis in Burkholderia cepacia ATCC 25416.
    Li K; West TP
    Lett Appl Microbiol; 1995 Nov; 21(5):340-3. PubMed ID: 7576530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uridylate-trapping sugar analogs in combination with inhibitors of uridylate synthesis de novo and 5-fluorouridine.
    Keppler D; Fauler J; Gasser T; Holstege A; Leube K; Schulz-Holstege C; Weckbecker G
    Adv Enzyme Regul; 1985; 23():61-79. PubMed ID: 2416194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of the pyrimidine biosynthetic pathway in Pseudomonas pseudoalcaligenes.
    West TP
    Arch Microbiol; 1994; 162(1-2):75-9. PubMed ID: 7916185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of pyrimidine formation in Pseudomonas lundensis.
    West TP
    Can J Microbiol; 2009 Mar; 55(3):261-8. PubMed ID: 19370069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of aspartate transcarbamoylase in Escherichia coli: transcriptional regulation of the pyrB-pyrI operon.
    Navre M; Schachman HK
    Proc Natl Acad Sci U S A; 1983 Mar; 80(5):1207-11. PubMed ID: 6298785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of pyrimidine synthesis in Pseudomonas fragi.
    West TP
    Lett Appl Microbiol; 2002; 35(5):380-4. PubMed ID: 12390485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular cloning and characterization of the pyrB gene of Lactobacillus leichmannii encoding aspartate transcarbamylase.
    Becker J; Brendel M
    Biochimie; 1996; 78(1):3-13. PubMed ID: 8725005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular analysis of de novo pyrimidine synthesis in solanaceous species.
    Giermann N; Schröder M; Ritter T; Zrenner R
    Plant Mol Biol; 2002 Oct; 50(3):393-403. PubMed ID: 12369616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.