BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 18053819)

  • 1. Structural basis for the remarkable stability of Bacillus subtilis lipase (Lip A) at low pH.
    Rajakumara E; Acharya P; Ahmad S; Sankaranaryanan R; Rao NM
    Biochim Biophys Acta; 2008 Feb; 1784(2):302-11. PubMed ID: 18053819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystallization and preliminary X-ray crystallographic investigations on several thermostable forms of a Bacillus subtilis lipase.
    Rajakumara E; Acharya P; Ahmad S; Shanmugam VM; Rao NM; Sankaranarayanan R
    Acta Crystallogr D Biol Crystallogr; 2004 Jan; 60(Pt 1):160-2. PubMed ID: 14684916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis of selection and thermostability of laboratory evolved Bacillus subtilis lipase.
    Acharya P; Rajakumara E; Sankaranarayanan R; Rao NM
    J Mol Biol; 2004 Aug; 341(5):1271-81. PubMed ID: 15321721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro evolved non-aggregating and thermostable lipase: structural and thermodynamic investigation.
    Kamal MZ; Ahmad S; Molugu TR; Vijayalakshmi A; Deshmukh MV; Sankaranarayanan R; Rao NM
    J Mol Biol; 2011 Oct; 413(3):726-41. PubMed ID: 21925508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermostable Bacillus subtilis lipases: in vitro evolution and structural insight.
    Ahmad S; Kamal MZ; Sankaranarayanan R; Rao NM
    J Mol Biol; 2008 Aug; 381(2):324-40. PubMed ID: 18599073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Point mutation Gln121-Arg increased temperature optima of Bacillus lipase (1.4 subfamily) by fifteen degrees.
    Goomber S; Kumar R; Singh R; Mishra N; Kaur J
    Int J Biol Macromol; 2016 Jul; 88():507-14. PubMed ID: 27083848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of pH on the structure and stability of Bacillus circulans ssp. alkalophilus phosphoserine aminotransferase: thermodynamic and crystallographic studies.
    Kapetaniou EG; Thanassoulas A; Dubnovitsky AP; Nounesis G; Papageorgiou AC
    Proteins; 2006 Jun; 63(4):742-53. PubMed ID: 16532449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence spectroscopic analysis of the structure and dynamics of Bacillus subtilis lipase A governing its activity profile under alkaline conditions.
    Kübler D; Ingenbosch KN; Bergmann A; Weidmann M; Hoffmann-Jacobsen K
    Eur Biophys J; 2015 Dec; 44(8):655-65. PubMed ID: 26224303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biophysical characterization of mutants of Bacillus subtilis lipase evolved for thermostability: factors contributing to increased activity retention.
    Augustyniak W; Brzezinska AA; Pijning T; Wienk H; Boelens R; Dijkstra BW; Reetz MT
    Protein Sci; 2012 Apr; 21(4):487-97. PubMed ID: 22267088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ¹H, ¹³C and ¹⁵N resonance assignments of wild-type Bacillus subtilis Lipase A and its mutant evolved towards thermostability.
    Augustyniak W; Wienk H; Boelens R; Reetz MT
    Biomol NMR Assign; 2013 Oct; 7(2):249-52. PubMed ID: 22996591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. More stable structure of wheat germ lipase at low pH than its native state.
    Ahmad E; Fatima S; Khan MM; Khan RH
    Biochimie; 2010 Jul; 92(7):885-93. PubMed ID: 20363283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the thermostability and activity of Bacillus subtilis lipase mutants: insights from molecular dynamics simulations.
    Singh B; Bulusu G; Mitra A
    J Phys Chem B; 2015 Jan; 119(2):392-409. PubMed ID: 25495458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability studies on a lipase from Bacillus subtilis in guanidinium chloride.
    Acharya P; Rao NM
    J Protein Chem; 2003 Jan; 22(1):51-60. PubMed ID: 12739898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and characterization of a mesophilic lipase from Bacillus subtilis FH5 stable at high temperature and pH.
    Hasan F; Shah AA; Hameed A
    Acta Biol Hung; 2007 Mar; 58(1):115-32. PubMed ID: 17385549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering lipase A from mesophilic Bacillus subtilis for activity at low temperatures.
    Kumar V; Yedavalli P; Gupta V; Rao NM
    Protein Eng Des Sel; 2014 Mar; 27(3):73-82. PubMed ID: 24402332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal stability and atomic-resolution crystal structure of the Bacillus caldolyticus cold shock protein.
    Mueller U; Perl D; Schmid FX; Heinemann U
    J Mol Biol; 2000 Apr; 297(4):975-88. PubMed ID: 10736231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding of bis-ANS to Bacillus subtilis lipase: a combined computational and experimental investigation.
    Kamal MZ; Ali J; Rao NM
    Biochim Biophys Acta; 2013 Aug; 1834(8):1501-9. PubMed ID: 23639749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-resolution X-ray structure of the DNA-binding protein HU from the hyper-thermophilic Thermotoga maritima and the determinants of its thermostability.
    Christodoulou E; Rypniewski WR; Vorgias CR
    Extremophiles; 2003 Apr; 7(2):111-22. PubMed ID: 12664263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rational design of K173A substitution enhances thermostability coupled with catalytic activity of Enterobacter sp. Bn12 lipase.
    Farrokh P; Yakhchali B; Karkhane AA
    J Mol Microbiol Biotechnol; 2014; 24(4):262-9. PubMed ID: 25277599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of the alkalohyperthermophilic Archaeoglobus fulgidus lipase contains a unique C-terminal domain essential for long-chain substrate binding.
    Chen CK; Lee GC; Ko TP; Guo RT; Huang LM; Liu HJ; Ho YF; Shaw JF; Wang AH
    J Mol Biol; 2009 Jul; 390(4):672-85. PubMed ID: 19447113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.