These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 18054032)

  • 1. Modulation of the adsorption properties at air-water interfaces of complexes of egg white ovalbumin with pectin by the dielectric constant.
    Kudryashova EV; de Jongh HH
    J Colloid Interface Sci; 2008 Feb; 318(2):430-9. PubMed ID: 18054032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular details of ovalbumin-pectin complexes at the air/water interface: a spectroscopic study.
    Kudryashova EV; Visser AJ; van Hoek A; de Jongh HH
    Langmuir; 2007 Jul; 23(15):7942-50. PubMed ID: 17585785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible self-association of ovalbumin at air-water interfaces and the consequences for the exerted surface pressure.
    Kudryashova EV; Visser AJ; De Jongh HH
    Protein Sci; 2005 Feb; 14(2):483-93. PubMed ID: 15659378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and dynamics of egg white ovalbumin adsorbed at the air/water interface.
    Kudryashova EV; Meinders MB; Visser AJ; van Hoek A; de Jongh HH
    Eur Biophys J; 2003 Sep; 32(6):553-62. PubMed ID: 12709747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of mixed beta-lactoglobulin/pectin adsorbed layers at air/water interfaces; a spectroscopy study.
    Ganzevles RA; Fokkink R; van Vliet T; Cohen Stuart MA; de Jongh HH
    J Colloid Interface Sci; 2008 Jan; 317(1):137-47. PubMed ID: 17945249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface adsorption behaviour of milk whey protein and pectin mixtures under conditions of air-water interface saturation.
    Perez AA; Sánchez CC; Patino JM; Rubiolo AC; Santiago LG
    Colloids Surf B Biointerfaces; 2011 Jul; 85(2):306-15. PubMed ID: 21440425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfacial properties of heat-treated ovalbumin.
    Croguennec T; Renault A; Beaufils S; Dubois JJ; Pezennec S
    J Colloid Interface Sci; 2007 Nov; 315(2):627-36. PubMed ID: 17707856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein adsorption at air-water interfaces: a combination of details.
    de Jongh HH; Kosters HA; Kudryashova E; Meinders MB; Trofimova D; Wierenga PA
    Biopolymers; 2004 May-Jun 5; 74(1-2):131-5. PubMed ID: 15137110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulating surface rheology by electrostatic protein/polysaccharide interactions.
    Ganzevles RA; Zinoviadou K; van Vliet T; Cohen MA; de Jongh HH
    Langmuir; 2006 Nov; 22(24):10089-96. PubMed ID: 17107004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative description of the relation between protein net charge and protein adsorption to air-water interfaces.
    Wierenga PA; Meinders MB; Egmond MR; Voragen AG; de Jongh HH
    J Phys Chem B; 2005 Sep; 109(35):16946-52. PubMed ID: 16853156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of acetylation of ovalbumin on its adsorption behavior at solid/liquid interface.
    Bhaduri A; Matsudomi N; Das KP
    Biosci Biotechnol Biochem; 1996 Oct; 60(10):1559-64. PubMed ID: 8987651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The adsorption and unfolding kinetics determines the folding state of proteins at the air-water interface and thereby the equation of state.
    Wierenga PA; Egmond MR; Voragen AG; de Jongh HH
    J Colloid Interface Sci; 2006 Jul; 299(2):850-7. PubMed ID: 16600281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the extent of protein intermolecular interactions at air-water interfaces using spectroscopic techniques.
    de Jongh HH; Wierenga PA
    Biopolymers; 2006 Jul; 82(4):384-9. PubMed ID: 16583438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient measurement and structure analysis of protein-polysaccharide multilayers at fluid interfaces.
    Bertsch P; Thoma A; Bergfreund J; Geue T; Fischer P
    Soft Matter; 2019 Aug; 15(31):6362-6368. PubMed ID: 31298681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of protein-pectin electrostatic interaction on the foam stability mechanism.
    Sadahira MS; Lopes FC; Rodrigues MI; Netto FM
    Carbohydr Polym; 2014 Mar; 103():55-61. PubMed ID: 24528700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polysaccharide charge density regulating protein adsorption to air/water interfaces by protein/polysaccharide complex formation.
    Ganzevles RA; Kosters H; Vliet Tv; Stuart MA; de Jongh HH
    J Phys Chem B; 2007 Nov; 111(45):12969-76. PubMed ID: 17949032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tensiometry and dilational rheology of mixed β-lactoglobulin/ionic surfactant adsorption layers at water/air and water/hexane interfaces.
    Dan A; Gochev G; Miller R
    J Colloid Interface Sci; 2015 Jul; 449():383-91. PubMed ID: 25666640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Milk whey proteins and xanthan gum interactions in solution and at the air-water interface: a rheokinetic study.
    Perez AA; Sánchez CC; Patino JM; Rubiolo AC; Santiago LG
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):50-7. PubMed ID: 20692133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of electrostatic interactions on formation and stability of emulsions containing oil droplets coated by beta-lactoglobulin-pectin complexes.
    Guzey D; McClements DJ
    J Agric Food Chem; 2007 Jan; 55(2):475-85. PubMed ID: 17227082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pectin-lipid assembly at the air-water interface: effect of the pectin charge distribution.
    Ropers MH; Meister A; Blume A; Ralet MC
    Biomacromolecules; 2008 Apr; 9(4):1306-12. PubMed ID: 18330992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.