These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
75 related articles for article (PubMed ID: 18054045)
1. A theoretical interpretation of the transient sialic acid toxicity of a nanR mutant of Escherichia coli. Chu D; Roobol J; Blomfield IC J Mol Biol; 2008 Jan; 375(3):875-89. PubMed ID: 18054045 [TBL] [Abstract][Full Text] [Related]
2. Multiple co-regulatory elements and IHF are necessary for the control of fimB expression in response to sialic acid and N-acetylglucosamine in Escherichia coli K-12. Sohanpal BK; Friar S; Roobol J; Plumbridge JA; Blomfield IC Mol Microbiol; 2007 Feb; 63(4):1223-36. PubMed ID: 17238917 [TBL] [Abstract][Full Text] [Related]
3. Integrated regulatory responses of fimB to N-acetylneuraminic (sialic) acid and GlcNAc in Escherichia coli K-12. Sohanpal BK; El-Labany S; Lahooti M; Plumbridge JA; Blomfield IC Proc Natl Acad Sci U S A; 2004 Nov; 101(46):16322-7. PubMed ID: 15534208 [TBL] [Abstract][Full Text] [Related]
4. Transcription of Sialic Acid Catabolism Genes in Corynebacterium glutamicum Is Subject to Catabolite Repression and Control by the Transcriptional Repressor NanR. Uhde A; Brühl N; Goldbeck O; Matano C; Gurow O; Rückert C; Marin K; Wendisch VF; Krämer R; Seibold GM J Bacteriol; 2016 Aug; 198(16):2204-18. PubMed ID: 27274030 [TBL] [Abstract][Full Text] [Related]
5. Regulation of sialic acid catabolism by the DNA binding protein NanR in Escherichia coli. Kalivoda KA; Steenbergen SM; Vimr ER; Plumbridge J J Bacteriol; 2003 Aug; 185(16):4806-15. PubMed ID: 12897000 [TBL] [Abstract][Full Text] [Related]
7. Different regions of Mlc and NagC, homologous transcriptional repressors controlling expression of the glucose and N-acetylglucosamine phosphotransferase systems in Escherichia coli, are required for inducer signal recognition. Pennetier C; Domínguez-Ramírez L; Plumbridge J Mol Microbiol; 2008 Jan; 67(2):364-77. PubMed ID: 18067539 [TBL] [Abstract][Full Text] [Related]
8. Convergent pathways for utilization of the amino sugars N-acetylglucosamine, N-acetylmannosamine, and N-acetylneuraminic acid by Escherichia coli. Plumbridge J; Vimr E J Bacteriol; 1999 Jan; 181(1):47-54. PubMed ID: 9864311 [TBL] [Abstract][Full Text] [Related]
9. A GntR-type transcriptional repressor controls sialic acid utilization in Bifidobacterium breve UCC2003. Egan M; O'Connell Motherway M; van Sinderen D FEMS Microbiol Lett; 2015 Feb; 362(4):. PubMed ID: 25688064 [TBL] [Abstract][Full Text] [Related]
10. Effect of DNA looping on the induction kinetics of the lac operon. Narang A J Theor Biol; 2007 Aug; 247(4):695-712. PubMed ID: 17490688 [TBL] [Abstract][Full Text] [Related]
11. Regulation of sialic acid transport and catabolism in Haemophilus influenzae. Johnston JW; Zaleski A; Allen S; Mootz JM; Armbruster D; Gibson BW; Apicella MA; Munson RS Mol Microbiol; 2007 Oct; 66(1):26-39. PubMed ID: 17880422 [TBL] [Abstract][Full Text] [Related]
12. Repression of galP, the galactose transporter in Escherichia coli, requires the specific regulator of N-acetylglucosamine metabolism. El Qaidi S; Allemand F; Oberto J; Plumbridge J Mol Microbiol; 2009 Jan; 71(1):146-57. PubMed ID: 19007420 [TBL] [Abstract][Full Text] [Related]
13. Sialic acid-mediated gene expression in Streptococcus pneumoniae and role of NanR as a transcriptional activator of the nan gene cluster. Afzal M; Shafeeq S; Ahmed H; Kuipers OP Appl Environ Microbiol; 2015 May; 81(9):3121-31. PubMed ID: 25724955 [TBL] [Abstract][Full Text] [Related]
14. Structural insights into the regulation of sialic acid catabolism by the Vibrio vulnificus transcriptional repressor NanR. Hwang J; Kim BS; Jang SY; Lim JG; You DJ; Jung HS; Oh TK; Lee JO; Choi SH; Kim MH Proc Natl Acad Sci U S A; 2013 Jul; 110(30):E2829-37. PubMed ID: 23832782 [TBL] [Abstract][Full Text] [Related]
15. The YfiD protein contributes to the pyruvate formate-lyase flux in an Escherichia coli arcA mutant strain. Zhu J; Shalel-Levanon S; Bennett G; San KY Biotechnol Bioeng; 2007 May; 97(1):138-43. PubMed ID: 17013945 [TBL] [Abstract][Full Text] [Related]
16. Microbial production of N-acetylneuraminic acid by genetically engineered Escherichia coli. Ishikawa M; Koizumi S Carbohydr Res; 2010 Dec; 345(18):2605-9. PubMed ID: 20971455 [TBL] [Abstract][Full Text] [Related]
17. Catabolite repression in Escherichia coli- a comparison of modelling approaches. Kremling A; Kremling S; Bettenbrock K FEBS J; 2009 Jan; 276(2):594-602. PubMed ID: 19087189 [TBL] [Abstract][Full Text] [Related]
18. YjhS (NanS) is required for Escherichia coli to grow on 9-O-acetylated N-acetylneuraminic acid. Steenbergen SM; Jirik JL; Vimr ER J Bacteriol; 2009 Nov; 191(22):7134-9. PubMed ID: 19749043 [TBL] [Abstract][Full Text] [Related]
19. Bistability of the lac operon during growth of Escherichia coli on lactose and lactose+glucose. Narang A; Pilyugin SS Bull Math Biol; 2008 May; 70(4):1032-64. PubMed ID: 18246403 [TBL] [Abstract][Full Text] [Related]