These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 18054046)

  • 21. Bacterial twin-arginine signal peptide-dependent protein translocation pathway: evolution and mechanism.
    Wu LF; Ize B; Chanal A; Quentin Y; Fichant G
    J Mol Microbiol Biotechnol; 2000 Apr; 2(2):179-89. PubMed ID: 10939242
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of Streptomyces lividans proteins secreted by the twin-arginine translocation pathway following growth with different carbon sources.
    Guimond J; Morosoli R
    Can J Microbiol; 2008 Jul; 54(7):549-58. PubMed ID: 18641701
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-level secretion of a recombinant protein to the culture medium with a Bacillus subtilis twin-arginine translocation system in Escherichia coli.
    Albiniak AM; Matos CF; Branston SD; Freedman RB; Keshavarz-Moore E; Robinson C
    FEBS J; 2013 Aug; 280(16):3810-21. PubMed ID: 23745597
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Formation of functional Tat translocases from heterologous components.
    Hicks MG; Guymer D; Buchanan G; Widdick DA; Caldelari I; Berks BC; Palmer T
    BMC Microbiol; 2006 Jul; 6():64. PubMed ID: 16854235
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Export pathway selectivity of Escherichia coli twin arginine translocation signal peptides.
    Tullman-Ercek D; DeLisa MP; Kawarasaki Y; Iranpour P; Ribnicky B; Palmer T; Georgiou G
    J Biol Chem; 2007 Mar; 282(11):8309-16. PubMed ID: 17218314
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Competition between Sec- and TAT-dependent protein translocation in Escherichia coli.
    Cristóbal S; de Gier JW; Nielsen H; von Heijne G
    EMBO J; 1999 Jun; 18(11):2982-90. PubMed ID: 10357811
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Signal peptides for recombinant protein secretion in bacterial expression systems.
    Freudl R
    Microb Cell Fact; 2018 Mar; 17(1):52. PubMed ID: 29598818
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Overlapping transport and chaperone-binding functions within a bacterial twin-arginine signal peptide.
    Grahl S; Maillard J; Spronk CA; Vuister GW; Sargent F
    Mol Microbiol; 2012 Mar; 83(6):1254-67. PubMed ID: 22329966
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-salinity growth conditions promote Tat-independent secretion of Tat substrates in Bacillus subtilis.
    van der Ploeg R; Monteferrante CG; Piersma S; Barnett JP; Kouwen TR; Robinson C; van Dijl JM
    Appl Environ Microbiol; 2012 Nov; 78(21):7733-44. PubMed ID: 22923407
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Tat system of Gram-positive bacteria.
    Goosens VJ; Monteferrante CG; van Dijl JM
    Biochim Biophys Acta; 2014 Aug; 1843(8):1698-706. PubMed ID: 24140208
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Escherichia coli twin arginine (Tat) mutant translocases possessing relaxed signal peptide recognition specificities.
    Kreutzenbeck P; Kröger C; Lausberg F; Blaudeck N; Sprenger GA; Freudl R
    J Biol Chem; 2007 Mar; 282(11):7903-11. PubMed ID: 17229735
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mapping the signal peptide binding and oligomer contact sites of the core subunit of the pea twin arginine protein translocase.
    Ma X; Cline K
    Plant Cell; 2013 Mar; 25(3):999-1015. PubMed ID: 23512851
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Features of a twin-arginine signal peptide required for recognition by a Tat proofreading chaperone.
    Buchanan G; Maillard J; Nabuurs SB; Richardson DJ; Palmer T; Sargent F
    FEBS Lett; 2008 Dec; 582(29):3979-84. PubMed ID: 19013157
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Twin-arginine translocation of methyl parathion hydrolase in Bacillus subtilis.
    Yang C; Song C; Freudl R; Mulchandani A; Qiao C
    Environ Sci Technol; 2010 Oct; 44(19):7607-12. PubMed ID: 20812717
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tat-Independent Secretion of Polyethylene Terephthalate Hydrolase PETase in Bacillus subtilis 168 Mediated by Its Native Signal Peptide.
    Huang X; Cao L; Qin Z; Li S; Kong W; Liu Y
    J Agric Food Chem; 2018 Dec; 66(50):13217-13227. PubMed ID: 30465427
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The twin-arginine signal peptide of Bacillus subtilis YwbN can direct either Tat- or Sec-dependent secretion of different cargo proteins: secretion of active subtilisin via the B. subtilis Tat pathway.
    Kolkman MA; van der Ploeg R; Bertels M; van Dijk M; van der Laan J; van Dijl JM; Ferrari E
    Appl Environ Microbiol; 2008 Dec; 74(24):7507-13. PubMed ID: 18931290
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tat-dependent protein targeting in prokaryotes and chloroplasts.
    Robinson C; Bolhuis A
    Biochim Biophys Acta; 2004 Nov; 1694(1-3):135-47. PubMed ID: 15546663
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Twin-arginine signal peptide of Bacillus subtilis YwbN can direct Tat-dependent secretion of methyl parathion hydrolase.
    Liu R; Zuo Z; Xu Y; Song C; Jiang H; Qiao C; Xu P; Zhou Q; Yang C
    J Agric Food Chem; 2014 Apr; 62(13):2913-8. PubMed ID: 24620988
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unusual signal peptide directs penicillin amidase from Escherichia coli to the Tat translocation machinery.
    Ignatova Z; Hörnle C; Nurk A; Kasche V
    Biochem Biophys Res Commun; 2002 Feb; 291(1):146-9. PubMed ID: 11829474
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vivo assessment of the Tat signal peptide specificity in Escherichia coli.
    Ize B; Gérard F; Wu LF
    Arch Microbiol; 2002 Dec; 178(6):548-53. PubMed ID: 12420178
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.