BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 18054106)

  • 1. Characterization of tannase activity in cell-free extracts of Lactobacillus plantarum CECT 748T.
    Rodríguez H; de las Rivas B; Gómez-Cordovés C; Muñoz R
    Int J Food Microbiol; 2008 Jan; 121(1):92-8. PubMed ID: 18054106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tannase activity by lactic acid bacteria isolated from grape must and wine.
    Vaquero I; Marcobal A; Muñoz R
    Int J Food Microbiol; 2004 Nov; 96(2):199-204. PubMed ID: 15364474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrolysis of tannic acid catalyzed by immobilized-stabilized derivatives of Tannase from Lactobacillus plantarum.
    Curiel JA; Betancor L; de las Rivas B; Muñoz R; Guisan JM; Fernández-Lorente G
    J Agric Food Chem; 2010 May; 58(10):6403-9. PubMed ID: 20438129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tannin degradation by a novel tannase enzyme present in some Lactobacillus plantarum strains.
    Jiménez N; Esteban-Torres M; Mancheño JM; de Las Rivas B; Muñoz R
    Appl Environ Microbiol; 2014 May; 80(10):2991-7. PubMed ID: 24610854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and characterization of tannase from Paecilomyces variotii: hydrolysis of tannic acid using immobilized tannase.
    Mahendran B; Raman N; Kim DJ
    Appl Microbiol Biotechnol; 2006 Apr; 70(4):444-50. PubMed ID: 16133325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the p-coumaric acid decarboxylase from Lactobacillus plantarum CECT 748(T).
    Rodríguez H; Landete JM; Curiel JA; de Las Rivas B; Mancheño JM; Muñoz R
    J Agric Food Chem; 2008 May; 56(9):3068-72. PubMed ID: 18416556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production and physicochemical properties of recombinant Lactobacillus plantarum tannase.
    Curiel JA; Rodríguez H; Acebrón I; Mancheño JM; De Las Rivas B; Muñoz R
    J Agric Food Chem; 2009 Jul; 57(14):6224-30. PubMed ID: 19601665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential Gene Expression by Lactobacillus plantarum WCFS1 in Response to Phenolic Compounds Reveals New Genes Involved in Tannin Degradation.
    Reverón I; Jiménez N; Curiel JA; Peñas E; López de Felipe F; de Las Rivas B; Muñoz R
    Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28115379
    [No Abstract]   [Full Text] [Related]  

  • 9. Identification and cloning of a gene encoding tannase (tannin acylhydrolase) from Lactobacillus plantarum ATCC 14917(T).
    Iwamoto K; Tsuruta H; Nishitaini Y; Osawa R
    Syst Appl Microbiol; 2008 Sep; 31(4):269-77. PubMed ID: 18653299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of tannic acid on Lactobacillus plantarum wine strain during starvation: A proteomic study.
    Cecconi D; Cristofoletti M; Milli A; Antonioli P; Rinalducci S; Zolla L; Zapparoli G
    Electrophoresis; 2009 Mar; 30(6):957-65. PubMed ID: 19229842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystallographic and mutational analyses of tannase from Lactobacillus plantarum.
    Matoba Y; Tanaka N; Noda M; Higashikawa F; Kumagai T; Sugiyama M
    Proteins; 2013 Nov; 81(11):2052-8. PubMed ID: 23836494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of tannase production by Lactobacillus plantarum CIR1: validation in gas-lift bioreactor.
    Aguilar-Zarate P; Cruz-Hernandez MA; Montañez JC; Belmares-Cerda RE; Aguilar CN
    Bioprocess Biosyst Eng; 2014 Nov; 37(11):2305-16. PubMed ID: 24861311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a bacterial tannase from Streptococcus gallolyticus UCN34 suitable for tannin biodegradation.
    Jiménez N; Barcenilla JM; de Felipe FL; de Las Rivas B; Muñoz R
    Appl Microbiol Biotechnol; 2014; 98(14):6329-37. PubMed ID: 24577784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of novel cell-associated tannase from newly isolated Serratia ficaria DTC.
    Belur PD; Gopal M; Nirmala KR; Basavaraj N
    J Microbiol Biotechnol; 2010 Apr; 20(4):732-6. PubMed ID: 20467246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacillus sphaericus: the highest bacterial tannase producer with potential for gallic acid synthesis.
    Raghuwanshi S; Dutt K; Gupta P; Misra S; Saxena RK
    J Biosci Bioeng; 2011 Jun; 111(6):635-40. PubMed ID: 21402491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution of tannic acid degrading microorganisms in the soil and comparative study of tannase from two fungal strains.
    Mondal KC; Samanta S; Giri S; Pati BR
    Acta Microbiol Pol; 2001; 50(1):75-82. PubMed ID: 11518397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on the extracellular tannase from newly isolated Bacillus licheniformis KBR 6.
    Mondal KC; Pati BR
    J Basic Microbiol; 2000; 40(4):223-32. PubMed ID: 10986668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phage adsorption to Lactobacillus plantarum: influence of physiological and environmental factors.
    Marcó MB; Reinheimer JA; Quiberoni A
    Int J Food Microbiol; 2010 Apr; 138(3):270-5. PubMed ID: 20153539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradation of gallotannins and ellagitannins.
    Li M; Kai Y; Qiang H; Dongying J
    J Basic Microbiol; 2006; 46(1):68-84. PubMed ID: 16463321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of bioimprinted tannase and its kinetic and thermodynamics properties in synthesis of propyl gallate by transesterification in anhydrous medium.
    Nie G; Zheng Z; Gong G; Zhao G; Liu Y; Song J; Dai J
    Appl Biochem Biotechnol; 2012 Aug; 167(8):2305-17. PubMed ID: 22711493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.