These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

724 related articles for article (PubMed ID: 18054222)

  • 61. Surfactant-enhanced remediation of organic contaminated soil and water.
    Paria S
    Adv Colloid Interface Sci; 2008 Apr; 138(1):24-58. PubMed ID: 18154747
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The potential for intrinsic bioremediation of BTEX hydrocarbons in soil/ground water contaminated with gas condensate.
    Borole AP; Sublette KL; Raterman KT; Javanmardian M; Fisher JB
    Appl Biochem Biotechnol; 1997; 63-65():719-30. PubMed ID: 18576127
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Mixed aerobic and anaerobic microbial communities in benzene-contaminated groundwater.
    Aburto A; Fahy A; Coulon F; Lethbridge G; Timmis KN; Ball AS; McGenity TJ
    J Appl Microbiol; 2009 Jan; 106(1):317-28. PubMed ID: 19120616
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Flexible catabolism of monoaromatic hydrocarbons by anaerobic microbiota adapting to oxygen exposure.
    Wu Z; Yu X; Ji Y; Liu G; Gao P; Xia L; Li P; Liang B; Freilich S; Gu L; Qiao W; Jiang J
    J Hazard Mater; 2024 Jan; 462():132762. PubMed ID: 37837778
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Application of luminescent biosensors for monitoring the degradation and toxicity of BTEX compounds in soils.
    Dawson JJ; Iroegbu CO; Maciel H; Paton GI
    J Appl Microbiol; 2008 Jan; 104(1):141-51. PubMed ID: 17922829
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Microbial reduction of sulfate injected to gas condensate plumes in cold groundwater.
    Van Stempvoort DR; Armstrong J; Mayer B
    J Contam Hydrol; 2007 Jul; 92(3-4):184-207. PubMed ID: 17292997
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A microcosm study on persulfate oxidation combined with enhanced bioremediation to remove dissolved BTEX in gasoline-contaminated groundwater.
    Xia Y; Cheng Y; Li L; Chen Y; Jiang Y
    Biodegradation; 2020 Jun; 31(3):213-222. PubMed ID: 32472328
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Novel BTEX-degrading strains from subsurface soil: Isolation, identification and growth evaluation.
    Kaur G; Lecka J; Krol M; Brar SK
    Environ Pollut; 2023 Oct; 335():122303. PubMed ID: 37558195
    [TBL] [Abstract][Full Text] [Related]  

  • 69. An integrated numerical and physical modeling system for an enhanced in situ bioremediation process.
    Huang YF; Huang GH; Wang GQ; Lin QG; Chakma A
    Environ Pollut; 2006 Dec; 144(3):872-85. PubMed ID: 16631288
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Construction and comparison of fluorescence and bioluminescence bacterial biosensors for the detection of bioavailable toluene and related compounds.
    Li YF; Li FY; Ho CL; Liao VH
    Environ Pollut; 2008 Mar; 152(1):123-9. PubMed ID: 17583401
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Anaerobic BTEX biodegradation linked to nitrate and sulfate reduction.
    Dou J; Liu X; Hu Z; Deng D
    J Hazard Mater; 2008 Mar; 151(2-3):720-9. PubMed ID: 17640804
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A simple method for calculating growth rates of petroleum hydrocarbon plumes.
    Bekins BA; Cozzarelli IM; Curtis GP
    Ground Water; 2005; 43(6):817-26. PubMed ID: 16324003
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Combined application of stable carbon isotope analysis and specific metabolites determination for assessing in situ degradation of aromatic hydrocarbons in a tar oil-contaminated aquifer.
    Griebler C; Safinowski M; Vieth A; Richnow HH; Meckenstock RU
    Environ Sci Technol; 2004 Jan; 38(2):617-31. PubMed ID: 14750740
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Chemical and microbial community analysis during aerobic biostimulation assays of non-sulfonated alkyl-benzene-contaminated groundwater.
    Martínez-Pascual E; Jiménez N; Vidal-Gavilan G; Viñas M; Solanas AM
    Appl Microbiol Biotechnol; 2010 Oct; 88(4):985-95. PubMed ID: 20714718
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Recent advances in the bioremediation of arsenic-contaminated groundwater.
    Zouboulis AI; Katsoyiannis IA
    Environ Int; 2005 Feb; 31(2):213-9. PubMed ID: 15661286
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands.
    Lovley DR; Woodward JC; Chapelle FH
    Nature; 1994 Jul; 370(6485):128-31. PubMed ID: 8022480
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Field applicability of Compound-Specific Isotope Analysis (CSIA) for characterization and quantification of in situ contaminant degradation in aquifers.
    Braeckevelt M; Fischer A; Kästner M
    Appl Microbiol Biotechnol; 2012 Jun; 94(6):1401-21. PubMed ID: 22573267
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Biostimulation of anaerobic BTEX biodegradation under fermentative methanogenic conditions at source-zone groundwater contaminated with a biodiesel blend (B20).
    Ramos DT; da Silva ML; Chiaranda HS; Alvarez PJ; Corseuil HX
    Biodegradation; 2013 Jun; 24(3):333-41. PubMed ID: 23054180
    [TBL] [Abstract][Full Text] [Related]  

  • 79. In situ transformation of deuterated toluene and xylene to benzylsuccinic acid analogues in BTEX-contaminated aquifers.
    Reusser DE; Istok JD; Beller HR; Field JA
    Environ Sci Technol; 2002 Oct; 36(19):4127-34. PubMed ID: 12380085
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Assessing the correlation between anaerobic toluene degradation activity and bssA concentrations in hydrocarbon-contaminated aquifer material.
    Kazy SK; Monier AL; Alvarez PJ
    Biodegradation; 2010 Sep; 21(5):793-800. PubMed ID: 20204467
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 37.