These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 18054509)
21. By-product formation during exposure of respiring Saccharomyces cerevisiae cultures to excess glucose is not caused by a limited capacity of pyruvate carboxylase. Bauer J; Luttik MA; Flores CL; van Dijken JP; Pronk JT; Niederberger P FEMS Microbiol Lett; 1999 Oct; 179(1):107-13. PubMed ID: 10481094 [TBL] [Abstract][Full Text] [Related]
22. Extracellular acidification by Saccharomyces cerevisiae in normal and in heavy water. Kotyk A; Lapathitis G Folia Microbiol (Praha); 1998; 43(6):623-5. PubMed ID: 10069011 [TBL] [Abstract][Full Text] [Related]
23. Toward "homolactic" fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background. Novy V; Brunner B; Müller G; Nidetzky B Biotechnol Bioeng; 2017 Jan; 114(1):163-171. PubMed ID: 27426989 [TBL] [Abstract][Full Text] [Related]
24. Mechanism of stimulation of endogenous fermentation in yeast by carbonyl cyanide m-chlorophenylhydrazone. Noshiro A; Purwin C; Laux M; Nicolay K; Scheffers WA; Holzer H J Biol Chem; 1987 Oct; 262(29):14154-7. PubMed ID: 2820996 [TBL] [Abstract][Full Text] [Related]
25. Improved ethanol tolerance of Saccharomyces cerevisiae in mixed cultures with Kluyveromyces lactis on high-sugar fermentation. Yamaoka C; Kurita O; Kubo T Microbiol Res; 2014 Dec; 169(12):907-14. PubMed ID: 24932883 [TBL] [Abstract][Full Text] [Related]
26. Effect of ethanol on the glucose-induced movements of protons across the plasma membrane of Saccharomyces cerevisiae NCYC 431. Juroszek JR; Feuillat M; Charpentier C Can J Microbiol; 1987 Feb; 33(2):93-7. PubMed ID: 3034391 [TBL] [Abstract][Full Text] [Related]
27. Influence of medium buffering capacity on inhibition of Saccharomyces cerevisiae growth by acetic and lactic acids. Thomas KC; Hynes SH; Ingledew WM Appl Environ Microbiol; 2002 Apr; 68(4):1616-23. PubMed ID: 11916676 [TBL] [Abstract][Full Text] [Related]
28. Respiratory capacities of mitochondria of Saccharomyces cerevisiae CBS 8066 and Candida utilis CBS 621 grown under glucose limitation. Van Urk H; Bruinenberg PM; Veenhuis M; Scheffers WA; Van Dijken JP Antonie Van Leeuwenhoek; 1989 Oct; 56(3):211-20. PubMed ID: 2686549 [TBL] [Abstract][Full Text] [Related]
29. Kinetics of growth and glucose transport in glucose-limited chemostat cultures of Saccharomyces cerevisiae CBS 8066. Postma E; Scheffers WA; van Dijken JP Yeast; 1989; 5(3):159-65. PubMed ID: 2660462 [TBL] [Abstract][Full Text] [Related]
30. Effects of high medium pH on growth, metabolism and transport in Saccharomyces cerevisiae. Peña A; Sánchez NS; Álvarez H; Calahorra M; Ramírez J FEMS Yeast Res; 2015 Mar; 15(2):. PubMed ID: 25673753 [TBL] [Abstract][Full Text] [Related]
31. Correlation between TCA cycle flux and glucose uptake rate during respiro-fermentative growth of Saccharomyces cerevisiae. Heyland J; Fu J; Blank LM Microbiology (Reading); 2009 Dec; 155(Pt 12):3827-3837. PubMed ID: 19684065 [TBL] [Abstract][Full Text] [Related]
32. Steady-state and transient-state analyses of aerobic fermentation in Saccharomyces kluyveri. Møller K; Bro C; Piskur J; Nielsen J; Olsson L FEMS Yeast Res; 2002 May; 2(2):233-44. PubMed ID: 12702311 [TBL] [Abstract][Full Text] [Related]
33. Simultaneous overexpression of enzymes of the lower part of glycolysis can enhance the fermentative capacity of Saccharomyces cerevisiae. Peter Smits H; Hauf J; Müller S; Hobley TJ; Zimmermann FK; Hahn-Hägerdal B; Nielsen J; Olsson L Yeast; 2000 Oct; 16(14):1325-34. PubMed ID: 11015729 [TBL] [Abstract][Full Text] [Related]
34. Intracellular acidification does not account for inhibition of Saccharomyces cerevisiae growth in the presence of ethanol. Rosa MF; Sá-Correia I FEMS Microbiol Lett; 1996 Jan; 135(2-3):271-4. PubMed ID: 8595868 [TBL] [Abstract][Full Text] [Related]
35. Oscillatory metabolism of Saccharomyces cerevisiae in continuous culture. Satroutdinov AD; Kuriyama H; Kobayashi H FEMS Microbiol Lett; 1992 Nov; 77(1-3):261-7. PubMed ID: 1334018 [TBL] [Abstract][Full Text] [Related]
36. Energetic and metabolic transient response of Saccharomyces cerevisiae to benzoic acid. Kresnowati MT; van Winden WA; van Gulik WM; Heijnen JJ FEBS J; 2008 Nov; 275(22):5527-41. PubMed ID: 18959741 [TBL] [Abstract][Full Text] [Related]
37. Involvement of nitrogen metabolism in the triggering of ethanol fermentation in aerobic chemostat cultures of Saccharomyces cerevisiae. Aon JC; Cortassa S Metab Eng; 2001 Jul; 3(3):250-64. PubMed ID: 11461147 [TBL] [Abstract][Full Text] [Related]
38. Effect of organic acids and nitrogen source on alcoholic fermentation: study of their buffering capacity. Torija MJ; Beltran G; Novo M; Poblet M; Rozès N; Mas A; Guillamón JM J Agric Food Chem; 2003 Feb; 51(4):916-22. PubMed ID: 12568549 [TBL] [Abstract][Full Text] [Related]
39. Prolonged selection in aerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae causes a partial loss of glycolytic capacity. Jansen MLA; Diderich JA; Mashego M; Hassane A; de Winde JH; Daran-Lapujade P; Pronk JT Microbiology (Reading); 2005 May; 151(Pt 5):1657-1669. PubMed ID: 15870473 [TBL] [Abstract][Full Text] [Related]
40. Identification of genes required for maximal tolerance to high-glucose concentrations, as those present in industrial alcoholic fermentation media, through a chemogenomics approach. Teixeira MC; Raposo LR; Palma M; Sá-Correia I OMICS; 2010 Apr; 14(2):201-10. PubMed ID: 20210661 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]