These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 18054509)
41. Transport and metabolism of fumaric acid in Saccharomyces cerevisiae in aerobic glucose-limited chemostat culture. Shah MV; van Mastrigt O; Heijnen JJ; van Gulik WM Yeast; 2016 Apr; 33(4):145-61. PubMed ID: 26683700 [TBL] [Abstract][Full Text] [Related]
42. Processes involved in the creation of buffering capacity and in substrate-induced proton extrusion in the yeast Saccharomyces cerevisiae. Sigler K; Kotyk A; Knotková A; Opekarová M Biochim Biophys Acta; 1981 May; 643(3):583-92. PubMed ID: 6264955 [TBL] [Abstract][Full Text] [Related]
43. Characterisation of proton fluxes across the cytoplasmic membrane of the yeast Saccharomyces cerevisiae. Haworth RS; Lemire BD; Crandall D; Cragoe EJ; Fliegel L Biochim Biophys Acta; 1991 Dec; 1098(1):79-89. PubMed ID: 1661160 [TBL] [Abstract][Full Text] [Related]
44. Effects of ethanol on Saccharomyces cerevisiae as monitored by in vivo 31P and 13C nuclear magnetic resonance. Loureiro-Dias MC; Santos H Arch Microbiol; 1990; 153(4):384-91. PubMed ID: 2186713 [TBL] [Abstract][Full Text] [Related]
45. Physiology of the fuel ethanol strain Saccharomyces cerevisiae PE-2 at low pH indicates a context-dependent performance relevant for industrial applications. Della-Bianca BE; de Hulster E; Pronk JT; van Maris AJ; Gombert AK FEMS Yeast Res; 2014 Dec; 14(8):1196-205. PubMed ID: 25263709 [TBL] [Abstract][Full Text] [Related]
46. Heat flux measurements for the fast monitoring of dynamic responses to glucose additions by yeasts that were subjected to different feeding regimes in continuous culture. van Kleeff BH; Kuenen JG; Heijnen JJ Biotechnol Prog; 1996; 12(4):510-8. PubMed ID: 8987477 [TBL] [Abstract][Full Text] [Related]
47. Insufficient uracil supply in fully aerobic chemostat cultures of Saccharomyces cerevisiae leads to respiro-fermentative metabolism and double nutrient-limitation. Basso TO; Dario MG; Tonso A; Stambuk BU; Gombert AK Biotechnol Lett; 2010 Jul; 32(7):973-7. PubMed ID: 20349336 [TBL] [Abstract][Full Text] [Related]
48. Competition for glucose between the yeasts Saccharomyces cerevisiae and Candida utilis. Postma E; Kuiper A; Tomasouw WF; Scheffers WA; van Dijken JP Appl Environ Microbiol; 1989 Dec; 55(12):3214-20. PubMed ID: 2694963 [TBL] [Abstract][Full Text] [Related]
49. Comparison of metabolic profiles of yeasts based on the difference of the Crabtree positive and negative. Imura M; Nitta K; Iwakiri R; Matsuda F; Shimizu H; Fukusaki E J Biosci Bioeng; 2020 Jan; 129(1):52-58. PubMed ID: 31537452 [TBL] [Abstract][Full Text] [Related]
50. Mechanism of control of adenylate cyclase activity in yeast by fermentable sugars and carbonyl cyanide m-chlorophenylhydrazone. Purwin C; Nicolay K; Scheffers WA; Holzer H J Biol Chem; 1986 Jul; 261(19):8744-9. PubMed ID: 3522579 [TBL] [Abstract][Full Text] [Related]
51. Modulating the distribution of fluxes among respiration and fermentation by overexpression of HAP4 in Saccharomyces cerevisiae. van Maris AJ; Bakker BM; Brandt M; Boorsma A; Teixeira de Mattos MJ; Grivell LA; Pronk JT; Blom J FEMS Yeast Res; 2001 Jul; 1(2):139-49. PubMed ID: 12702359 [TBL] [Abstract][Full Text] [Related]
52. Intracellular ethanol accumulation in Saccharomyces cerevisiae during fermentation. D'Amore T; Panchal CJ; Stewart GG Appl Environ Microbiol; 1988 Jan; 54(1):110-4. PubMed ID: 3278685 [TBL] [Abstract][Full Text] [Related]
53. Ethanol fermentation of acid-hydrolyzed cellulosic pyrolysate with Saccharomyces cerevisiae. Yu Z; Zhang H Bioresour Technol; 2004 Jun; 93(2):199-204. PubMed ID: 15051082 [TBL] [Abstract][Full Text] [Related]
54. L-Lactic acid production from glucose and xylose with engineered strains of Saccharomyces cerevisiae: aeration and carbon source influence yields and productivities. Novy V; Brunner B; Nidetzky B Microb Cell Fact; 2018 Apr; 17(1):59. PubMed ID: 29642896 [TBL] [Abstract][Full Text] [Related]
55. Dynamic in vivo metabolome response of Saccharomyces cerevisiae to a stepwise perturbation of the ATP requirement for benzoate export. Kresnowati MT; van Winden WA; van Gulik WM; Heijnen JJ Biotechnol Bioeng; 2008 Feb; 99(2):421-41. PubMed ID: 17614335 [TBL] [Abstract][Full Text] [Related]
56. Growth kinetics and physiological behavior of co-cultures of Saccharomyces cerevisiae and Kluyveromyces lactis, fermenting carob sugars extracted with whey. Rodrigues B; Lima-Costa ME; Constantino A; Raposo S; Felizardo C; Gonçalves D; Fernandes T; Dionísio L; Peinado JM Enzyme Microb Technol; 2016 Oct; 92():41-8. PubMed ID: 27542743 [TBL] [Abstract][Full Text] [Related]
57. [The effect of ethanol on the fatty acid content of Saccharomyces cerevisiae and Schwanniomyces occidentalis cells]. Hudz SP; Kolisnyk IaI Mikrobiol Z; 2000; 62(3):9-16. PubMed ID: 10932538 [TBL] [Abstract][Full Text] [Related]
58. Continuous cultivation of the yeast Saccharomyces cerevisiae at different dilution rates and glucose concentrations in nutrient media. Pejin D; Razmovski R Folia Microbiol (Praha); 1993; 38(2):141-6. PubMed ID: 8375779 [TBL] [Abstract][Full Text] [Related]
59. Improving ethanol production and viability of Saccharomyces cerevisiae by a vitamin feeding strategy during fed-batch process. Alfenore S; Molina-Jouve C; Guillouet SE; Uribelarrea JL; Goma G; Benbadis L Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):67-72. PubMed ID: 12382043 [TBL] [Abstract][Full Text] [Related]
60. The effect of citric acid and pH on growth and metabolism of anaerobic Saccharomyces cerevisiae and Zygosaccharomyces bailii cultures. Nielsen MK; Arneborg N Food Microbiol; 2007 Feb; 24(1):101-5. PubMed ID: 16943101 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]