BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 18054552)

  • 1. Glucose-dependent insulinotropic polypeptide enhances adipocyte development and glucose uptake in part through Akt activation.
    Song DH; Getty-Kaushik L; Tseng E; Simon J; Corkey BE; Wolfe MM
    Gastroenterology; 2007 Dec; 133(6):1796-805. PubMed ID: 18054552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose-dependent insulinotropic peptide impairs insulin signaling via inducing adipocyte inflammation in glucose-dependent insulinotropic peptide receptor-overexpressing adipocytes.
    Nie Y; Ma RC; Chan JC; Xu H; Xu G
    FASEB J; 2012 Jun; 26(6):2383-93. PubMed ID: 22366643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resistin knockout mice exhibit impaired adipocyte glucose-dependent insulinotropic polypeptide receptor (GIPR) expression.
    Kim SJ; Nian C; McIntosh CH
    Diabetes; 2013 Feb; 62(2):471-7. PubMed ID: 23002036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional expression of glucose-dependent insulinotropic polypeptide receptors is coupled to differentiation in a human adipocyte model.
    Weaver RE; Donnelly D; Wabitsch M; Grant PJ; Balmforth AJ
    Int J Obes (Lond); 2008 Nov; 32(11):1705-11. PubMed ID: 18779825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disruption of GIP/GIPR axis in human adipose tissue is linked to obesity and insulin resistance.
    Ceperuelo-Mallafré V; Duran X; Pachón G; Roche K; Garrido-Sánchez L; Vilarrasa N; Tinahones FJ; Vicente V; Pujol J; Vendrell J; Fernández-Veledo S
    J Clin Endocrinol Metab; 2014 May; 99(5):E908-19. PubMed ID: 24512489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adipocyte expression of the glucose-dependent insulinotropic polypeptide receptor involves gene regulation by PPARγ and histone acetylation.
    Kim SJ; Nian C; McIntosh CH
    J Lipid Res; 2011 Apr; 52(4):759-70. PubMed ID: 21245029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The pathogenic role of the GIP/GIPR axis in human endocrine tumors: emerging clinical mechanisms beyond diabetes.
    Regazzo D; Barbot M; Scaroni C; Albiger N; Occhi G
    Rev Endocr Metab Disord; 2020 Mar; 21(1):165-183. PubMed ID: 31933128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GIP-GIPR promotes neurite outgrowth of cortical neurons in Akt dependent manner.
    Teng L; Guan T; Guo B; Ma C; Lin G; Wu R; Xu M; Liu M; Liu Y
    Biochem Biophys Res Commun; 2021 Jan; 534():121-127. PubMed ID: 33321289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucose-dependent insulinotropic polypeptide (GIP) receptor antagonists as anti-diabetic agents.
    Gasbjerg LS; Gabe MBN; Hartmann B; Christensen MB; Knop FK; Holst JJ; Rosenkilde MM
    Peptides; 2018 Feb; 100():173-181. PubMed ID: 29412817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of High Glucose Levels and Glycated Serum on GIP Responsiveness in the Pancreatic Beta Cell Line HIT-T15.
    Puddu A; Sanguineti R; Montecucco F; Viviani GL
    J Diabetes Res; 2015; 2015():326359. PubMed ID: 26221611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucose-dependent insulinotropic polypeptide receptor null mice exhibit compensatory changes in the enteroinsular axis.
    Pamir N; Lynn FC; Buchan AM; Ehses J; Hinke SA; Pospisilik JA; Miyawaki K; Yamada Y; Seino Y; McIntosh CH; Pederson RA
    Am J Physiol Endocrinol Metab; 2003 May; 284(5):E931-9. PubMed ID: 12540373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resistin is a key mediator of glucose-dependent insulinotropic polypeptide (GIP) stimulation of lipoprotein lipase (LPL) activity in adipocytes.
    Kim SJ; Nian C; McIntosh CH
    J Biol Chem; 2007 Nov; 282(47):34139-47. PubMed ID: 17890220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased GIP signaling induces adipose inflammation via a HIF-1α-dependent pathway and impairs insulin sensitivity in mice.
    Chen S; Okahara F; Osaki N; Shimotoyodome A
    Am J Physiol Endocrinol Metab; 2015 Mar; 308(5):E414-25. PubMed ID: 25537494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of GIP in α-cells and glucagon secretion.
    El K; Campbell JE
    Peptides; 2020 Mar; 125():170213. PubMed ID: 31785304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucose-dependent insulinotropic polypeptide confers early phase insulin release to oral glucose in rats: demonstration by a receptor antagonist.
    Lewis JT; Dayanandan B; Habener JF; Kieffer TJ
    Endocrinology; 2000 Oct; 141(10):3710-6. PubMed ID: 11014226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of determinants of glucose-dependent insulinotropic polypeptide receptor that interact with N-terminal biologically active region of the natural ligand.
    Yaqub T; Tikhonova IG; Lättig J; Magnan R; Laval M; Escrieut C; Boulègue C; Hewage C; Fourmy D
    Mol Pharmacol; 2010 Apr; 77(4):547-58. PubMed ID: 20061446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A naturally occurring GIP receptor variant undergoes enhanced agonist-induced desensitization, which impairs GIP control of adipose insulin sensitivity.
    Mohammad S; Patel RT; Bruno J; Panhwar MS; Wen J; McGraw TE
    Mol Cell Biol; 2014 Oct; 34(19):3618-29. PubMed ID: 25047836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucose-dependent insulinotropic polypeptide (GIP) and its receptor (GIPR): cellular localization, lesion-affected expression, and impaired regenerative axonal growth.
    Buhren BA; Gasis M; Thorens B; Müller HW; Bosse F
    J Neurosci Res; 2009 Jun; 87(8):1858-70. PubMed ID: 19170165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Individual and combined effects of GIP and xenin on differentiation, glucose uptake and lipolysis in 3T3-L1 adipocytes.
    English A; Craig SL; Flatt PR; Irwin N
    Biol Chem; 2020 Oct; 401(11):1293-1303. PubMed ID: 32769216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The glucose-dependent insulinotropic polypeptide (GIP) regulates body weight and food intake via CNS-GIPR signaling.
    Zhang Q; Delessa CT; Augustin R; Bakhti M; Colldén G; Drucker DJ; Feuchtinger A; Caceres CG; Grandl G; Harger A; Herzig S; Hofmann S; Holleman CL; Jastroch M; Keipert S; Kleinert M; Knerr PJ; Kulaj K; Legutko B; Lickert H; Liu X; Luippold G; Lutter D; Malogajski E; Medina MT; Mowery SA; Blutke A; Perez-Tilve D; Salinno C; Sehrer L; DiMarchi RD; Tschöp MH; Stemmer K; Finan B; Wolfrum C; Müller TD
    Cell Metab; 2021 Apr; 33(4):833-844.e5. PubMed ID: 33571454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.