BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 18054914)

  • 1. Using continuous porous silicon gradients to study the influence of surface topography on the behaviour of neuroblastoma cells.
    Khung YL; Barritt G; Voelcker NH
    Exp Cell Res; 2008 Feb; 314(4):789-800. PubMed ID: 18054914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of nanoscale surface roughness on neural cell attachment on silicon.
    Khan SP; Auner GG; Newaz GM
    Nanomedicine; 2005 Jun; 1(2):125-9. PubMed ID: 17292068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioactive properties of nanostructured porous silicon for enhancing electrode to neuron interfaces.
    Moxon KA; Hallman S; Aslani A; Kalkhoran NM; Lelkes PI
    J Biomater Sci Polym Ed; 2007; 18(10):1263-81. PubMed ID: 17939885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micropatterning of porous silicon films by direct laser writing.
    Khung YL; Graney SD; Voelcker NH
    Biotechnol Prog; 2006; 22(5):1388-93. PubMed ID: 17022678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative analysis of osteoblast-like cells (MG63) morphology on nanogrooved substrata with various groove and ridge dimensions.
    Yang JY; Ting YC; Lai JY; Liu HL; Fang HW; Tsai WB
    J Biomed Mater Res A; 2009 Sep; 90(3):629-40. PubMed ID: 18563818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of mammalian cell adhesion on surface-modified porous silicon.
    Low SP; Williams KA; Canham LT; Voelcker NH
    Biomaterials; 2006 Sep; 27(26):4538-46. PubMed ID: 16707158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The surface properties of nanocrystalline diamond and nanoparticulate diamond powder and their suitability as cell growth support surfaces.
    Lechleitner T; Klauser F; Seppi T; Lechner J; Jennings P; Perco P; Mayer B; Steinmüller-Nethl D; Preiner J; Hinterdorfer P; Hermann M; Bertel E; Pfaller K; Pfaller W
    Biomaterials; 2008 Nov; 29(32):4275-84. PubMed ID: 18701160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patterning of DNA nanostructures on silicon surface by electron beam lithography of self-assembled monolayer.
    Zhang GJ; Tanii T; Funatsu T; Ohdomari I
    Chem Commun (Camb); 2004 Apr; (7):786-7. PubMed ID: 15045063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porous silicon surfaces: a candidate substrate for reverse protein arrays in cancer biomarker detection.
    Ressine A; Corin I; Järås K; Guanti G; Simone C; Marko-Varga G; Laurell T
    Electrophoresis; 2007 Dec; 28(23):4407-15. PubMed ID: 18041036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale topography of nanocrystalline diamonds promotes differentiation of osteoblasts.
    Kalbacova M; Rezek B; Baresova V; Wolf-Brandstetter C; Kromka A
    Acta Biomater; 2009 Oct; 5(8):3076-85. PubMed ID: 19433140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micro-BLMs on highly ordered porous silicon substrates: rupture process and lateral mobility.
    Weiskopf D; Schmitt EK; Klühr MH; Dertinger SK; Steinem C
    Langmuir; 2007 Aug; 23(18):9134-9. PubMed ID: 17655338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Networks of neuroblastoma cells on porous silicon substrates reveal a small world topology.
    Marinaro G; La Rocca R; Toma A; Barberio M; Cancedda L; Di Fabrizio E; Decuzzi P; Gentile F
    Integr Biol (Camb); 2015 Feb; 7(2):184-97. PubMed ID: 25515929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of morphology and functions of human hepatoblastoma cells by nano-grooved substrata.
    Tsai WB; Lin JH
    Acta Biomater; 2009 Jun; 5(5):1442-54. PubMed ID: 19201667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of artificial micro- and nano-structured surfaces on cell behaviour.
    Martínez E; Engel E; Planell JA; Samitier J
    Ann Anat; 2009 Jan; 191(1):126-35. PubMed ID: 18692370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring surface topography with scanning electron microscopy. I. EZEImage: a program to obtain 3D surface data.
    Ponz E; Ladaga JL; Bonetto RD
    Microsc Microanal; 2006 Apr; 12(2):170-7. PubMed ID: 17481354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual silane surface functionalization for the selective attachment of human neuronal cells to porous silicon.
    Sweetman MJ; Shearer CJ; Shapter JG; Voelcker NH
    Langmuir; 2011 Aug; 27(15):9497-503. PubMed ID: 21678982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of porous silicon substrate for well-characterised sensitive DNA chip implement.
    Bessueille F; Dugas V; Vikulov V; Cloarec JP; Souteyrand E; Martin JR
    Biosens Bioelectron; 2005 Dec; 21(6):908-16. PubMed ID: 16257660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model porous surfaces for systematic studies of material-cell interactions.
    Petronis S; Gretzer C; Kasemo B; Gold J
    J Biomed Mater Res A; 2003 Sep; 66(3):707-21. PubMed ID: 12918055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell adhesion and migration on nanopatterned substrates and their effects on cell-capture yield.
    Kim DJ; Seol JK; Lee G; Kim GS; Lee SK
    Nanotechnology; 2012 Oct; 23(39):395102. PubMed ID: 22971755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Attachment of human primary osteoblast cells to modified polyethylene surfaces.
    Poulsson AH; Mitchell SA; Davidson MR; Johnstone AJ; Emmison N; Bradley RH
    Langmuir; 2009 Apr; 25(6):3718-27. PubMed ID: 19275183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.