These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
419 related articles for article (PubMed ID: 18055052)
41. The occurrence of Bacillus cereus, B. thuringiensis and B. mycoides in Chinese pasteurized full fat milk. Zhou G; Liu H; He J; Yuan Y; Yuan Z Int J Food Microbiol; 2008 Jan; 121(2):195-200. PubMed ID: 18077041 [TBL] [Abstract][Full Text] [Related]
42. Enumeration and confirmation of Bacillus cereus in foods: collaborative study. Lancette GA; Harmon SM J Assoc Off Anal Chem; 1980 May; 63(3):581-6. PubMed ID: 6776089 [TBL] [Abstract][Full Text] [Related]
43. Characterization of a small PlcR-regulated gene co-expressed with cereolysin O. Brillard J; Lereclus D BMC Microbiol; 2007 Jun; 7():52. PubMed ID: 17555563 [TBL] [Abstract][Full Text] [Related]
44. The members of the Bacillus cereus group are commonly present contaminants of fresh and heat-treated milk. Bartoszewicz M; Hansen BM; Swiecicka I Food Microbiol; 2008 Jun; 25(4):588-96. PubMed ID: 18456114 [TBL] [Abstract][Full Text] [Related]
45. Quantification methods for Bacillus cereus vegetative cells and spores in the gastrointestinal environment. Ceuppens S; Boon N; Rajkovic A; Heyndrickx M; Van de Wiele T; Uyttendaele M J Microbiol Methods; 2010 Nov; 83(2):202-10. PubMed ID: 20849884 [TBL] [Abstract][Full Text] [Related]
46. Cereulide formation by Bacillus weihenstephanensis and mesophilic emetic Bacillus cereus at temperature abuse depends on pre-incubation conditions. Thorsen L; Budde BB; Henrichsen L; Martinussen T; Jakobsen M Int J Food Microbiol; 2009 Aug; 134(1-2):133-9. PubMed ID: 19428136 [TBL] [Abstract][Full Text] [Related]
47. Identification of Bacillus cereus internalin and other candidate virulence genes specifically induced during oral infection in insects. Fedhila S; Daou N; Lereclus D; Nielsen-LeRoux C Mol Microbiol; 2006 Oct; 62(2):339-55. PubMed ID: 16978259 [TBL] [Abstract][Full Text] [Related]
48. Supplementation of Modified Mannitol-Yolk-Polymyxin B Agar with Cefuroxime for Quantitative Detection of Bacillus cereus in Food. Chon JW; Kim YJ; Kim DH; Song KY; Kim H; Seo KH J Food Sci; 2019 Jan; 84(1):133-137. PubMed ID: 30557913 [TBL] [Abstract][Full Text] [Related]
49. Comparison of cytotoxin cytK promoters from Bacillus cereus strain ATCC 14579 and from a B. cereus food-poisoning strain. Brillard J; Lereclus D Microbiology (Reading); 2004 Aug; 150(Pt 8):2699-2705. PubMed ID: 15289566 [TBL] [Abstract][Full Text] [Related]
50. Molecular methods to evaluate biodiversity in Bacillus cereus and Bacillus thuringiensis strains from different origins. Manzano M; Giusto C; Iacumin L; Cantoni C; Comi G Food Microbiol; 2009 May; 26(3):259-64. PubMed ID: 19269566 [TBL] [Abstract][Full Text] [Related]
51. Simultaneous detection and identification of Bacillus cereus group bacteria using multiplex PCR. Park SH; Kim HJ; Kim JH; Kim TW; Kim HY J Microbiol Biotechnol; 2007 Jul; 17(7):1177-82. PubMed ID: 18051330 [TBL] [Abstract][Full Text] [Related]
52. Assessment of a new selective chromogenic Bacillus cereus group plating medium and use of enterobacterial autoinducer of growth for cultural identification of Bacillus species. Reissbrodt R; Rassbach A; Burghardt B; Rienäcker I; Mietke H; Schleif J; Tschäpe H; Lyte M; Williams PH J Clin Microbiol; 2004 Aug; 42(8):3795-8. PubMed ID: 15297532 [TBL] [Abstract][Full Text] [Related]
53. Unique biomarkers as a potential predictive tool for differentiation of Bacillus cereus group based on real-time PCR. Park BJ; Chelliah R; Wei S; Park JH; Forghani F; Park YS; Cho MS; Park DS; Oh DH Microb Pathog; 2018 Feb; 115():131-137. PubMed ID: 29274457 [TBL] [Abstract][Full Text] [Related]
54. The incidence of Bacillus cereus in foods in Central Thailand. Suksuwan M Southeast Asian J Trop Med Public Health; 1983 Sep; 14(3):324-9. PubMed ID: 6419352 [TBL] [Abstract][Full Text] [Related]
55. Novel motB as a potential predictive tool for identification of B. cereus, B. thuringiensis and differentiation from other Bacillus species by triplex real-time PCR. Chelliah R; Wei S; Park BJ; Kim SH; Park DS; Kim SH; Hwan KS; Oh DH Microb Pathog; 2017 Oct; 111():22-27. PubMed ID: 28778821 [TBL] [Abstract][Full Text] [Related]
56. Improving quantitative exposure assessment by considering genetic diversity of B. cereus in cooked, pasteurised and chilled foods. Afchain AL; Carlin F; Nguyen-The C; Albert I Int J Food Microbiol; 2008 Nov; 128(1):165-73. PubMed ID: 18805600 [TBL] [Abstract][Full Text] [Related]
57. Broad distribution of enterotoxin genes (hblCDA, nheABC, cytK, and entFM) among Bacillus thuringiensis and Bacillus cereus as shown by novel primers. Ngamwongsatit P; Buasri W; Pianariyanon P; Pulsrikarn C; Ohba M; Assavanig A; Panbangred W Int J Food Microbiol; 2008 Feb; 121(3):352-6. PubMed ID: 18068844 [TBL] [Abstract][Full Text] [Related]
58. Phenotypic and genotypic diversity of Bacillus cereus isolates recovered from honey. López AC; Alippi AM Int J Food Microbiol; 2007 Jun; 117(2):175-84. PubMed ID: 17466403 [TBL] [Abstract][Full Text] [Related]
59. Cereulide, the emetic toxin of Bacillus cereus, is putatively a product of nonribosomal peptide synthesis. Toh M; Moffitt MC; Henrichsen L; Raftery M; Barrow K; Cox JM; Marquis CP; Neilan BA J Appl Microbiol; 2004; 97(5):992-1000. PubMed ID: 15479414 [TBL] [Abstract][Full Text] [Related]
60. Toxin gene profiling of enterotoxic and emetic Bacillus cereus. Ehling-Schulz M; Guinebretiere MH; Monthán A; Berge O; Fricker M; Svensson B FEMS Microbiol Lett; 2006 Jul; 260(2):232-40. PubMed ID: 16842349 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]