These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
413 related articles for article (PubMed ID: 18055174)
1. A novel method for automatic determination of different stages of multiple sclerosis lesions in brain MR FLAIR images. Khayati R; Vafadust M; Towhidkhah F; Nabavi SM Comput Med Imaging Graph; 2008 Mar; 32(2):124-33. PubMed ID: 18055174 [TBL] [Abstract][Full Text] [Related]
2. Fully automatic segmentation of multiple sclerosis lesions in brain MR FLAIR images using adaptive mixtures method and Markov random field model. Khayati R; Vafadust M; Towhidkhah F; Nabavi M Comput Biol Med; 2008 Mar; 38(3):379-90. PubMed ID: 18262511 [TBL] [Abstract][Full Text] [Related]
3. Relationship between contrast enhancement on fluid-attenuated inversion recovery MR sequences and signal intensity on T2-weighted MR images: visual evaluation of brain tumors. Kubota T; Yamada K; Kizu O; Hirota T; Ito H; Ishihara K; Nishimura T J Magn Reson Imaging; 2005 Jun; 21(6):694-700. PubMed ID: 15906343 [TBL] [Abstract][Full Text] [Related]
4. An approach to comparing accuracies of two FLAIR MR sequences in the detection of multiple sclerosis lesions in the brain in the absence of gold standard. Bilello M; Suri N; Krejza J; Woo JH; Bagley LJ; Mamourian AC; Vossough A; Chen JY; Millian BR; Mulderink T; Markowitz CE; Melhem ER Acad Radiol; 2010 Jun; 17(6):686-95. PubMed ID: 20457413 [TBL] [Abstract][Full Text] [Related]
5. Computer-aided detection of multiple sclerosis lesions in brain magnetic resonance images: False positive reduction scheme consisted of rule-based, level set method, and support vector machine. Yamamoto D; Arimura H; Kakeda S; Magome T; Yamashita Y; Toyofuku F; Ohki M; Higashida Y; Korogi Y Comput Med Imaging Graph; 2010 Jul; 34(5):404-13. PubMed ID: 20189353 [TBL] [Abstract][Full Text] [Related]
6. [Segmentation of multiple sclerosis lesions based on Markov random fields model for MR images]. Li B; Chen W Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Aug; 26(4):861-5. PubMed ID: 19813627 [TBL] [Abstract][Full Text] [Related]
7. Voxel-based iterative sensitivity (VBIS) analysis: methods and a validation of intensity scaling for T2-weighted imaging of hippocampal sclerosis. Abbott DF; Pell GS; Pardoe H; Jackson GD Neuroimage; 2009 Feb; 44(3):812-9. PubMed ID: 18996207 [TBL] [Abstract][Full Text] [Related]
8. T1-weighted fluid-attenuated inversion recovery and T1-weighted fast spin-echo contrast-enhanced imaging: a comparison in 20 patients with brain lesions. Al-Saeed O; Ismail M; Athyal RP; Rudwan M; Khafajee S J Med Imaging Radiat Oncol; 2009 Aug; 53(4):366-72. PubMed ID: 19695043 [TBL] [Abstract][Full Text] [Related]
9. Evaluating intensity normalization on MRIs of human brain with multiple sclerosis. Shah M; Xiao Y; Subbanna N; Francis S; Arnold DL; Collins DL; Arbel T Med Image Anal; 2011 Apr; 15(2):267-82. PubMed ID: 21233004 [TBL] [Abstract][Full Text] [Related]
10. Semiautomatic parametric model-based 3D lesion segmentation for evaluation of MR-guided radiofrequency ablation therapy. Lazebnik RS; Weinberg BD; Breen MS; Lewin JS; Wilson DL Acad Radiol; 2005 Dec; 12(12):1491-501. PubMed ID: 16321737 [TBL] [Abstract][Full Text] [Related]
11. Computer-aided evaluation method of white matter hyperintensities related to subcortical vascular dementia based on magnetic resonance imaging. Kawata Y; Arimura H; Yamashita Y; Magome T; Ohki M; Toyofuku F; Higashida Y; Tsuchiya K Comput Med Imaging Graph; 2010 Jul; 34(5):370-6. PubMed ID: 20116974 [TBL] [Abstract][Full Text] [Related]
12. Automatic segmentation and classification of multiple sclerosis in multichannel MRI. Akselrod-Ballin A; Galun M; Gomori JM; Filippi M; Valsasina P; Basri R; Brandt A IEEE Trans Biomed Eng; 2009 Oct; 56(10):2461-9. PubMed ID: 19758850 [TBL] [Abstract][Full Text] [Related]
13. Probabilistic segmentation of white matter lesions in MR imaging. Anbeek P; Vincken KL; van Osch MJ; Bisschops RH; van der Grond J Neuroimage; 2004 Mar; 21(3):1037-44. PubMed ID: 15006671 [TBL] [Abstract][Full Text] [Related]
14. Automated segmentation of multiple sclerosis lesion subtypes with multichannel MRI. Wu Y; Warfield SK; Tan IL; Wells WM; Meier DS; van Schijndel RA; Barkhof F; Guttmann CR Neuroimage; 2006 Sep; 32(3):1205-15. PubMed ID: 16797188 [TBL] [Abstract][Full Text] [Related]
15. Agreement between different input image types in brain atrophy measurement in multiple sclerosis using SIENAX and SIENA. Neacsu V; Jasperse B; Korteweg T; Knol DL; Valsasina P; Filippi M; Barkhof F; Rovaris M; Vrenken H; J Magn Reson Imaging; 2008 Sep; 28(3):559-65. PubMed ID: 18777529 [TBL] [Abstract][Full Text] [Related]
16. Pattern recognition system for the discrimination of multiple sclerosis from cerebral microangiopathy lesions based on texture analysis of magnetic resonance images. Theocharakis P; Glotsos D; Kalatzis I; Kostopoulos S; Georgiadis P; Sifaki K; Tsakouridou K; Malamas M; Delibasis G; Cavouras D; Nikiforidis G Magn Reson Imaging; 2009 Apr; 27(3):417-22. PubMed ID: 18786795 [TBL] [Abstract][Full Text] [Related]
17. Hepatic hemangioma: correlation of enhancement types with diffusion-weighted MR findings and apparent diffusion coefficients. Goshima S; Kanematsu M; Kondo H; Yokoyama R; Kajita K; Tsuge Y; Shiratori Y; Onozuka M; Moriyama N Eur J Radiol; 2009 May; 70(2):325-30. PubMed ID: 18321673 [TBL] [Abstract][Full Text] [Related]
18. Rapid and automatic calculation of the midsagittal plane in magnetic resonance diffusion and perfusion images. Nowinski WL; Prakash B; Volkau I; Ananthasubramaniam A; Beauchamp NJ Acad Radiol; 2006 May; 13(5):652-63. PubMed ID: 16627207 [TBL] [Abstract][Full Text] [Related]
19. Automatic detection of gadolinium-enhancing multiple sclerosis lesions in brain MRI using conditional random fields. Karimaghaloo Z; Shah M; Francis SJ; Arnold DL; Collins DL; Arbel T IEEE Trans Med Imaging; 2012 Jun; 31(6):1181-94. PubMed ID: 22318484 [TBL] [Abstract][Full Text] [Related]