BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 18055191)

  • 1. Using exonuclease III to enhance electrochemical detection of natural DNA damage in layered films.
    Zhang Y; Zhang H; Hu N
    Biosens Bioelectron; 2008 Feb; 23(7):1077-82. PubMed ID: 18055191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid and sensitive electrochemical sensing of DNA damage induced by V2O5 nanobelts/HCl/H2O2 system in natural dsDNA layer-by-layer films.
    Zhang W; Yang T; Li W; Li G; Jiao K
    Biosens Bioelectron; 2010 Jun; 25(10):2370-4. PubMed ID: 20356729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigations of the antioxidant properties of plant extracts using a DNA-electrochemical biosensor.
    Mello LD; Hernandez S; Marrazza G; Mascini M; Kubota LT
    Biosens Bioelectron; 2006 Jan; 21(7):1374-82. PubMed ID: 16002275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxicity screening by electrochemical detection of DNA damage by metabolites generated in situ in ultrathin DNA-enzyme films.
    Zhou L; Yang J; Estavillo C; Stuart JD; Schenkman JB; Rusling JF
    J Am Chem Soc; 2003 Feb; 125(5):1431-6. PubMed ID: 12553846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loading/release behavior of (chitosan/DNA)n layer-by-layer films toward negatively charged anthraquinone and its application in electrochemical detection of natural DNA damage.
    Liu Y; Hu N
    Biosens Bioelectron; 2007 Dec; 23(5):661-7. PubMed ID: 17768042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA biosensor based on the electrochemiluminescence of Ru(bpy)3(2+) with DNA-binding intercalators.
    Lee JG; Yun K; Lim GS; Lee SE; Kim S; Park JK
    Bioelectrochemistry; 2007 May; 70(2):228-34. PubMed ID: 17079194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensors for toxicity of chemicals and oxidative stress based on electrochemical catalytic DNA oxidation.
    Rusling JF
    Biosens Bioelectron; 2004 Nov; 20(5):1022-8. PubMed ID: 15530799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemically fabricated polypyrrole nanofiber-modified electrode as a new electrochemical DNA biosensor.
    Ghanbari Kh; Bathaie SZ; Mousavi MF
    Biosens Bioelectron; 2008 Jul; 23(12):1825-31. PubMed ID: 18406598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical DNA sensing using osmium complexes as hybridization indicators.
    Del Pozo MV; Alonso C; Pariente F; Lorenzo E
    Biosens Bioelectron; 2005 Feb; 20(8):1549-58. PubMed ID: 15626608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of DNA repair enzymes in electrochemical detection of damage to DNA bases in vitro and in cells.
    Cahová-Kucharíková K; Fojta M; Mozga T; Palecek E
    Anal Chem; 2005 May; 77(9):2920-7. PubMed ID: 15859612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New amperometric and potentiometric immunosensors based on gold nanoparticles/tris(2,2'-bipyridyl)cobalt(III) multilayer films for hepatitis B surface antigen determinations.
    Tang D; Yuan R; Chai Y; Fu Y; Dai J; Liu Y; Zhong X
    Biosens Bioelectron; 2005 Oct; 21(4):539-48. PubMed ID: 16202866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of electrochemically prepared polypyrrole-polyvinyl sulphonate films to DNA biosensor.
    Arora K; Chaubey A; Singhal R; Singh RP; Pandey MK; Samanta SB; Malhotra BD; Chand S
    Biosens Bioelectron; 2006 Mar; 21(9):1777-83. PubMed ID: 16226454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The electrochemical preparation of FAD/ZnO with hemoglobin film-modified electrodes and their electroanalytical properties.
    Lin KC; Chen SM
    Biosens Bioelectron; 2006 Mar; 21(9):1737-45. PubMed ID: 16203129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic force microscopy characterization of an electrochemical DNA-biosensor.
    Chiorcea AM; Oliveira Brett AM
    Bioelectrochemistry; 2004 Jun; 63(1-2):229-32. PubMed ID: 15110277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic amplification detection of DNA based on "molecular beacon" biosensors.
    Mao X; Jiang J; Xu X; Chu X; Luo Y; Shen G; Yu R
    Biosens Bioelectron; 2008 May; 23(10):1555-61. PubMed ID: 18304797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label-free DNA sensor based on organic thin film transistors.
    Yan F; Mok SM; Yu J; Chan HL; Yang M
    Biosens Bioelectron; 2009 Jan; 24(5):1241-5. PubMed ID: 18771910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A tris(2,2'-bipyridyl)cobalt(III)-bovine serum albumin composite membrane for biosensors.
    Zhuo Y; Yuan R; Chai Y; Sun A; Zhang Y; Yang J
    Biomaterials; 2006 Nov; 27(31):5420-9. PubMed ID: 16843525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical detection of natural DNA damage induced by in situ peroxidase-generated reactive nitrogen species in DNA layer-by-layer films.
    Zhang Y; Liu H; Hu N
    Bioelectrochemistry; 2012 Aug; 86():67-71. PubMed ID: 22387104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced electron transfer for hemoglobin entrapped in a cationic gemini surfactant films on electrode and the fabrication of nitric oxide biosensor.
    Wang F; Chen X; Xu Y; Hu S; Gao Z
    Biosens Bioelectron; 2007 Sep; 23(2):176-82. PubMed ID: 17482453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voltammetric sensor for oxidized DNA using ultrathin films of osmium and ruthenium metallopolymers.
    Mugweru A; Wang B; Rusling J
    Anal Chem; 2004 Sep; 76(18):5557-63. PubMed ID: 15362921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.