BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 18055198)

  • 21. Reactor scale up for biological conversion of cellulosic biomass to ethanol.
    Shao X; Lynd L; Bakker A; LaRoche R; Wyman C
    Bioprocess Biosyst Eng; 2010 May; 33(4):485-93. PubMed ID: 19649658
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Straw bio-degradation by acidogenic bacteria and composite fungi.
    Zhang KQ; Chen XW; Ji M; Ning AR; Fan H; Zhou K
    J Environ Sci (China); 2004; 16(4):690-3. PubMed ID: 15495983
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinetic modeling of cellulosic biomass to ethanol via simultaneous saccharification and fermentation: Part II. Experimental validation using waste paper sludge and anticipation of CFD analysis.
    Shao X; Lynd L; Wyman C
    Biotechnol Bioeng; 2009 Jan; 102(1):66-72. PubMed ID: 18781686
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling intrinsic kinetics of enzymatic cellulose hydrolysis.
    Peri S; Karra S; Lee YY; Karim MN
    Biotechnol Prog; 2007; 23(3):626-37. PubMed ID: 17465526
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Relationships between analytical methods utilized as tools in the evaluation of landfill waste stability.
    Kelly RJ; Shearer BD; Kim J; Goldsmith CD; Hater GR; Novak JT
    Waste Manag; 2006; 26(12):1349-56. PubMed ID: 16427774
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility.
    Chundawat SP; Venkatesh B; Dale BE
    Biotechnol Bioeng; 2007 Feb; 96(2):219-31. PubMed ID: 16903002
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Consolidated bioprocessing of cellulosic biomass: an update.
    Lynd LR; van Zyl WH; McBride JE; Laser M
    Curr Opin Biotechnol; 2005 Oct; 16(5):577-83. PubMed ID: 16154338
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An integrated biochemical and physical model for the composting process.
    Sole-Mauri F; Illa J; Magrí A; Prenafeta-Boldú FX; Flotats X
    Bioresour Technol; 2007 Dec; 98(17):3278-93. PubMed ID: 16949816
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydraulic retention time impact of treated recirculated leachate on the hydrolytic kinetic rate of coffee pulp in an acidogenic reactor.
    Houbron E; González-López GI; Cano-Lozano V; Rustrían E
    Water Sci Technol; 2008; 58(7):1415-21. PubMed ID: 18957754
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unravelling carbon metabolism in anaerobic cellulolytic bacteria.
    Desvaux M
    Biotechnol Prog; 2006; 22(5):1229-38. PubMed ID: 17022659
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microbial community succession and lignocellulose degradation during agricultural waste composting.
    Yu H; Zeng G; Huang H; Xi X; Wang R; Huang D; Huang G; Li J
    Biodegradation; 2007 Dec; 18(6):793-802. PubMed ID: 17308882
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Drawida willsi Michalsen activates cellulolysis in pressmud vermireactor.
    Kumar R; Singh BL; Kumar U; Verma D; Shweta
    Bioresour Technol; 2010 Dec; 101(23):9086-91. PubMed ID: 20675126
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Particle concentration and yield stress of biomass slurries during enzymatic hydrolysis at high-solids loadings.
    Roche CM; Dibble CJ; Knutsen JS; Stickel JJ; Liberatore MW
    Biotechnol Bioeng; 2009 Oct; 104(2):290-300. PubMed ID: 19472300
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetic modeling of cellulosic biomass to ethanol via simultaneous saccharification and fermentation: Part I. Accommodation of intermittent feeding and analysis of staged reactors.
    Shao X; Lynd L; Wyman C; Bakker A
    Biotechnol Bioeng; 2009 Jan; 102(1):59-65. PubMed ID: 18781687
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of lignin and sugars to the aerobic decomposition of solid wastes.
    Komilis DP; Ham RK
    Waste Manag; 2003; 23(5):419-23. PubMed ID: 12893014
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-throughput microplate technique for enzymatic hydrolysis of lignocellulosic biomass.
    Chundawat SP; Balan V; Dale BE
    Biotechnol Bioeng; 2008 Apr; 99(6):1281-94. PubMed ID: 18306256
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A pore-hindered diffusion and reaction model can help explain the importance of pore size distribution in enzymatic hydrolysis of biomass.
    Luterbacher JS; Parlange JY; Walker LP
    Biotechnol Bioeng; 2013 Jan; 110(1):127-36. PubMed ID: 22811319
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lignocellulosic residues: biodegradation and bioconversion by fungi.
    Sánchez C
    Biotechnol Adv; 2009; 27(2):185-94. PubMed ID: 19100826
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Co-inoculating ruminal content neither provides active hydrolytic microbes nor improves methanization of ¹³C-cellulose in batch digesters.
    Chapleur O; Bize A; Serain T; Mazéas L; Bouchez T
    FEMS Microbiol Ecol; 2014 Mar; 87(3):616-29. PubMed ID: 24219327
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fluorescence in situ hybridization (FISH) to elucidate structure and diversity in granular biomass for the treatment of nitrogenous wastewater.
    Vlaeminck SE; Terada A; Carballa M; De Clippeleir H; Boon N; Smets BF; Verstraete W
    Commun Agric Appl Biol Sci; 2008; 73(1):43-7. PubMed ID: 18831243
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.