These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 18055427)

  • 1. Biophysical controls on rhizospheric and heterotrophic components of soil respiration in a boreal black spruce stand.
    Gaumont-Guay D; Black TA; Barr AG; Jassal RS; Nesic Z
    Tree Physiol; 2008 Feb; 28(2):161-71. PubMed ID: 18055427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Component respiration, ecosystem respiration and net primary production of a mature black spruce forest in northern Quebec.
    Hermle S; Lavigne MB; Bernier PY; Bergeron O; Paré D
    Tree Physiol; 2010 Apr; 30(4):527-40. PubMed ID: 20215120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Will changes in root-zone temperature in boreal spring affect recovery of photosynthesis in Picea mariana and Populus tremuloides in a future climate?
    Fréchette E; Ensminger I; Bergeron Y; Gessler A; Berninger F
    Tree Physiol; 2011 Nov; 31(11):1204-16. PubMed ID: 22021010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of root respiration to soil surface CO2 flux in a boreal black spruce chronosequence.
    Bond-Lamberty B; Wang C; Gower ST
    Tree Physiol; 2004 Dec; 24(12):1387-95. PubMed ID: 15465701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ecosystem warming does not affect photosynthesis or aboveground autotrophic respiration for boreal black spruce.
    Bronson DR; Gower ST
    Tree Physiol; 2010 Apr; 30(4):441-9. PubMed ID: 20144925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of soil respiration using automated chamber systems in an oak (Quercus mongolica) forest at the Nam-San site in Seoul, Korea.
    Joo SJ; Park SU; Park MS; Lee CS
    Sci Total Environ; 2012 Feb; 416():400-9. PubMed ID: 22197111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soil respiration fluxes in a temperate mixed forest: seasonality and temperature sensitivities differ among microbial and root-rhizosphere respiration.
    Ruehr NK; Buchmann N
    Tree Physiol; 2010 Feb; 30(2):165-76. PubMed ID: 20008837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forest soil respiration rate and delta13C is regulated by recent above ground weather conditions.
    Ekblad A; Boström B; Holm A; Comstedt D
    Oecologia; 2005 Mar; 143(1):136-42. PubMed ID: 15578226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fractional contributions by autotrophic and heterotrophic respiration to soil-surface CO2 efflux in Boreal forests.
    Högberg P; Nordgren A; Högberg MN; Ottosson-Löfvenius M; Bhupinderpal-Singh ; Olsson P; Linder S
    SEB Exp Biol Ser; 2005; ():251-67. PubMed ID: 17633039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Needle age and season influence photosynthetic temperature response and total annual carbon uptake in mature Picea mariana trees.
    Jensen AM; Warren JM; Hanson PJ; Childs J; Wullschleger SD
    Ann Bot; 2015 Oct; 116(5):821-32. PubMed ID: 26220656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Landscape heterogeneity, soil climate, and carbon exchange in a boreal black spruce forest.
    Dunn AL; Wofsy SC; v H Bright A
    Ecol Appl; 2009 Mar; 19(2):495-504. PubMed ID: 19323205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autotrophic and heterotrophic respiration in needle fir and Quercus-dominated stands in a cool-temperate forest, central Korea.
    Lee NY; Koo JW; Noh NJ; Kim J; Son Y
    J Plant Res; 2010 Jul; 123(4):485-95. PubMed ID: 20204671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling topographic effects on net ecosystem productivity of boreal black spruce forests.
    Grant RF
    Tree Physiol; 2004 Jan; 24(1):1-18. PubMed ID: 14652210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roots affect the response of heterotrophic soil respiration to temperature in tussock grass microcosms.
    Graham SL; Millard P; Hunt JE; Rogers GN; Whitehead D
    Ann Bot; 2012 Jul; 110(2):253-8. PubMed ID: 22492330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in net ecosystem productivity of boreal black spruce stands in response to changes in temperature at diurnal and seasonal time scales.
    Grant RF; Margolis HA; Barr AG; Black TA; Dunn AL; Bernier PY; Bergeron O
    Tree Physiol; 2009 Jan; 29(1):1-17. PubMed ID: 19203928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decreasing photosynthesis at different spatial scales during the late growing season on a boreal cutover.
    Martel MC; Margolis HA; Coursolle C; Bigras FJ; Heinsch FA; Running SW
    Tree Physiol; 2005 Jun; 25(6):689-99. PubMed ID: 15805089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stand age and fine root biomass, distribution and morphology in a Norway spruce chronosequence in southeast Norway.
    Børja I; De Wit HA; Steffenrem A; Majdi H
    Tree Physiol; 2008 May; 28(5):773-84. PubMed ID: 18316309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Black spruce assimilates nitrate in boreal winter.
    Koyama LA; Kielland K
    Tree Physiol; 2019 Apr; 39(4):536-543. PubMed ID: 30462316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Land-use changes alter CO2 flux patterns of a tall-grass Andropogon field and a savanna-woodland continuum in the Orinoco lowlands.
    San José J; Montes R; Grace J; Nikonova N
    Tree Physiol; 2008 Mar; 28(3):437-50. PubMed ID: 18171667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Investigation of heterotrophic and autotrophic components of soil respiration in a secondary forest in subtropical China].
    Shen XS; Chen ST; Hu ZH; Shi YS; Zhang Y
    Huan Jing Ke Xue; 2011 Nov; 32(11):3181-7. PubMed ID: 22295610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.