These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
313 related articles for article (PubMed ID: 18055435)
61. Gene expression patterns of trembling aspen trees following long-term exposure to interacting elevated CO2 and tropospheric O3. Gupta P; Duplessis S; White H; Karnosky DF; Martin F; Podila GK New Phytol; 2005 Jul; 167(1):129-41. PubMed ID: 15948836 [TBL] [Abstract][Full Text] [Related]
62. Seedlings of five boreal tree species differ in acclimation of net photosynthesis to elevated CO(2) and temperature. Tjoelker MG; Oleksyn J; Reich PB Tree Physiol; 1998 Nov; 18(11):715-726. PubMed ID: 12651406 [TBL] [Abstract][Full Text] [Related]
63. Elevated atmospheric CO2 concentration leads to increased whole-plant isoprene emission in hybrid aspen (Populus tremula × Populus tremuloides). Sun Z; Niinemets Ü; Hüve K; Rasulov B; Noe SM New Phytol; 2013 May; 198(3):788-800. PubMed ID: 23442171 [TBL] [Abstract][Full Text] [Related]
64. Isoprene emission rates under elevated CO2 and O3 in two field-grown aspen clones differing in their sensitivity to O3. Calfapietra C; Scarascia Mugnozza G; Karnosky DF; Loreto F; Sharkey TD New Phytol; 2008; 179(1):55-61. PubMed ID: 18557875 [TBL] [Abstract][Full Text] [Related]
65. Photosynthetic response of early and late leaves of white birch (Betula platyphylla var. japonica) grown under free-air ozone exposure. Hoshika Y; Watanabe M; Inada N; Mao Q; Koike T Environ Pollut; 2013 Nov; 182():242-7. PubMed ID: 23938447 [TBL] [Abstract][Full Text] [Related]
66. O3 flux-related responsiveness of photosynthesis, respiration, and stomatal conductance of adult Fagus sylvatica to experimentally enhanced free-air O3 exposure. Löw M; Häberle KH; Warren CR; Matyssek R Plant Biol (Stuttg); 2007 Mar; 9(2):197-206. PubMed ID: 17357014 [TBL] [Abstract][Full Text] [Related]
67. Reduction of soil carbon formation by tropospheric ozone under increased carbon dioxide levels. Loya WM; Pregitzer KS; Karberg NJ; King JS; Giardina CP Nature; 2003 Oct; 425(6959):705-7. PubMed ID: 14562100 [TBL] [Abstract][Full Text] [Related]
68. Effects of elevated CO₂ and temperature on photosynthesis and leaf traits of an understory dwarf bamboo in subalpine forest zone, China. Li Y; Zhang Y; Zhang X; Korpelainen H; Berninger F; Li C Physiol Plant; 2013 Jun; 148(2):261-72. PubMed ID: 23025819 [TBL] [Abstract][Full Text] [Related]
69. Leaf senescence and late-season net photosynthesis of sun and shade leaves of overstory sweetgum (Liquidambar styraciflua) grown in elevated and ambient carbon dioxide concentrations. Herrick JD; Thomas RB Tree Physiol; 2003 Feb; 23(2):109-18. PubMed ID: 12533305 [TBL] [Abstract][Full Text] [Related]
70. Leaf respiratory acclimation to climate: comparisons among boreal and temperate tree species along a latitudinal transect. Dillaway DN; Kruger EL Tree Physiol; 2011 Oct; 31(10):1114-27. PubMed ID: 21990024 [TBL] [Abstract][Full Text] [Related]
71. Elevated temperature and ozone modify structural characteristics of silver birch (Betula pendula) leaves. Hartikainen K; Kivimäenpää M; Nerg AM; Mäenpää M; Oksanen E; Rousi M; Holopainen T Tree Physiol; 2020 Apr; 40(4):467-483. PubMed ID: 31860708 [TBL] [Abstract][Full Text] [Related]
72. Light compensation points in shade-grown seedlings of deciduous broadleaf tree species with different successional traits raised under elevated CO2. Kitao M; Hida T; Eguchi N; Tobita H; Utsugi H; Uemura A; Kitaoka S; Koike T Plant Biol (Stuttg); 2016 Jan; 18 Suppl 1():22-7. PubMed ID: 26404633 [TBL] [Abstract][Full Text] [Related]
73. Comparative leaf growth strategies in response to low-water and low-light availability: variation in leaf physiology underlies variation in leaf mass per area in Populus tremuloides. Baird AS; Anderegg LDL; Lacey ME; HilleRisLambers J; Van Volkenburgh E Tree Physiol; 2017 Sep; 37(9):1140-1150. PubMed ID: 28379516 [TBL] [Abstract][Full Text] [Related]
74. Responses of deciduous broadleaf trees to defoliation in a CO2 enriched atmosphere. Volin JC; Kruger EL; Lindroth RL Tree Physiol; 2002 May; 22(7):435-48. PubMed ID: 11986047 [TBL] [Abstract][Full Text] [Related]
75. Naphthenic acids inhibit root water transport, gas exchange and leaf growth in aspen (Populus tremuloides) seedlings. Kamaluddin M; Zwiazek JJ Tree Physiol; 2002 Dec; 22(17):1265-70. PubMed ID: 12464580 [TBL] [Abstract][Full Text] [Related]
76. Photosynthesis and aboveground carbon allocation of two co-occurring poplar species in an urban brownfield. Radwanski D; Gallagher F; Vanderklein DW; Schäfer KVR Environ Pollut; 2017 Apr; 223():497-506. PubMed ID: 28139323 [TBL] [Abstract][Full Text] [Related]
77. Soil respiration, root biomass, and root turnover following long-term exposure of northern forests to elevated atmospheric CO2 and tropospheric O3. Pregitzer KS; Burton AJ; King JS; Zak DR New Phytol; 2008; 180(1):153-161. PubMed ID: 18643941 [TBL] [Abstract][Full Text] [Related]
78. Low soil temperature inhibits the effect of high nutrient supply on photosynthetic response to elevated carbon dioxide concentration in white birch seedlings. Ambebe TF; Dang QL; Li J Tree Physiol; 2010 Feb; 30(2):234-43. PubMed ID: 20007132 [TBL] [Abstract][Full Text] [Related]
79. Fungal community composition and metabolism under elevated CO(2) and O(3). Chung H; Zak DR; Lilleskov EA Oecologia; 2006 Feb; 147(1):143-54. PubMed ID: 16205953 [TBL] [Abstract][Full Text] [Related]
80. Elevated ozone reduces photosynthetic carbon gain by accelerating leaf senescence of inbred and hybrid maize in a genotype-specific manner. Yendrek CR; Erice G; Montes CM; Tomaz T; Sorgini CA; Brown PJ; McIntyre LM; Leakey ADB; Ainsworth EA Plant Cell Environ; 2017 Dec; 40(12):3088-3100. PubMed ID: 29044553 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]