BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 18055452)

  • 1. The PsbS protein controls the organization of the photosystem II antenna in higher plant thylakoid membranes.
    Kiss AZ; Ruban AV; Horton P
    J Biol Chem; 2008 Feb; 283(7):3972-8. PubMed ID: 18055452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The xanthophyll cycle affects reversible interactions between PsbS and light-harvesting complex II to control non-photochemical quenching.
    Sacharz J; Giovagnetti V; Ungerer P; Mastroianni G; Ruban AV
    Nat Plants; 2017 Jan; 3():16225. PubMed ID: 28134919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the PsbS-induced quenching in the plant major light-harvesting complex LHCII studied in proteoliposomes.
    Pawlak K; Paul S; Liu C; Reus M; Yang C; Holzwarth AR
    Photosynth Res; 2020 May; 144(2):195-208. PubMed ID: 32266611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is PsbS the site of non-photochemical quenching in photosynthesis?
    Niyogi KK; Li XP; Rosenberg V; Jung HS
    J Exp Bot; 2005 Jan; 56(411):375-82. PubMed ID: 15611143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PsbS protein modulates non-photochemical chlorophyll fluorescence quenching in membranes depleted of photosystems.
    Ware MA; Giovagnetti V; Belgio E; Ruban AV
    J Photochem Photobiol B; 2015 Nov; 152(Pt B):301-7. PubMed ID: 26233261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel method produces native light-harvesting complex II aggregates from the photosynthetic membrane revealing their role in nonphotochemical quenching.
    Shukla MK; Watanabe A; Wilson S; Giovagnetti V; Moustafa EI; Minagawa J; Ruban AV
    J Biol Chem; 2020 Dec; 295(51):17816-17826. PubMed ID: 33454016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disentangling the sites of non-photochemical quenching in vascular plants.
    Nicol L; Nawrocki WJ; Croce R
    Nat Plants; 2019 Nov; 5(11):1177-1183. PubMed ID: 31659240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arabidopsis plants lacking PsbS protein possess photoprotective energy dissipation.
    Johnson MP; Ruban AV
    Plant J; 2010 Jan; 61(2):283-9. PubMed ID: 19843315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photosynthetic properties of an Arabidopsis thaliana mutant possessing a defective PsbS gene.
    Peterson RB; Havir EA
    Planta; 2001 Nov; 214(1):142-52. PubMed ID: 11762164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PsbS interactions involved in the activation of energy dissipation in Arabidopsis.
    Correa-Galvis V; Poschmann G; Melzer M; Stühler K; Jahns P
    Nat Plants; 2016 Feb; 2():15225. PubMed ID: 27249196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fine tuning of the photosystem II major antenna mobility within the thylakoid membrane of higher plants.
    Daskalakis V; Papadatos S; Kleinekathöfer U
    Biochim Biophys Acta Biomembr; 2019 Dec; 1861(12):183059. PubMed ID: 31518553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PsbS-dependent and -independent mechanisms regulate carotenoid-chlorophyll energy coupling in grana thylakoids.
    Gacek DA; Holleboom CP; Tietz S; Kirchhoff H; Walla PJ
    FEBS Lett; 2019 Nov; 593(22):3190-3197. PubMed ID: 31444795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light-harvesting II antenna trimers connect energetically the entire photosynthetic machinery - including both photosystems II and I.
    Grieco M; Suorsa M; Jajoo A; Tikkanen M; Aro EM
    Biochim Biophys Acta; 2015; 1847(6-7):607-19. PubMed ID: 25843550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterisation of senescence-induced changes in light harvesting complex II and photosystem I complex of thylakoids of Cucumis sativus cotyledons: age induced association of LHCII with photosystem I.
    Prakash JS; Baig MA; Bhagwat AS; Mohanty P
    J Plant Physiol; 2003 Feb; 160(2):175-84. PubMed ID: 12685033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light-harvesting antenna composition controls the macrostructure and dynamics of thylakoid membranes in Arabidopsis.
    Goral TK; Johnson MP; Duffy CD; Brain AP; Ruban AV; Mullineaux CW
    Plant J; 2012 Jan; 69(2):289-301. PubMed ID: 21919982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic reorganization of photosystem II supercomplexes in response to variations in light intensities.
    Albanese P; Manfredi M; Meneghesso A; Marengo E; Saracco G; Barber J; Morosinotto T; Pagliano C
    Biochim Biophys Acta; 2016 Oct; 1857(10):1651-60. PubMed ID: 27378191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light- and pH-dependent structural changes in the PsbS subunit of photosystem II.
    Bergantino E; Segalla A; Brunetta A; Teardo E; Rigoni F; Giacometti GM; Szabò I
    Proc Natl Acad Sci U S A; 2003 Dec; 100(25):15265-70. PubMed ID: 14657329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Vivo Identification of Photosystem II Light Harvesting Complexes Interacting with PHOTOSYSTEM II SUBUNIT S.
    Gerotto C; Franchin C; Arrigoni G; Morosinotto T
    Plant Physiol; 2015 Aug; 168(4):1747-61. PubMed ID: 26069151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The PsbS protein plays important roles in photosystem II supercomplex remodeling under elevated light conditions.
    Dong L; Tu W; Liu K; Sun R; Liu C; Wang K; Yang C
    J Plant Physiol; 2015 Jan; 172():33-41. PubMed ID: 25047739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How paired PSII-LHCII supercomplexes mediate the stacking of plant thylakoid membranes unveiled by structural mass-spectrometry.
    Albanese P; Tamara S; Saracco G; Scheltema RA; Pagliano C
    Nat Commun; 2020 Mar; 11(1):1361. PubMed ID: 32170184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.