These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 18055461)
1. Role of NHERF1, cystic fibrosis transmembrane conductance regulator, and cAMP in the regulation of aquaporin 9. Pietrement C; Da Silva N; Silberstein C; James M; Marsolais M; Van Hoek A; Brown D; Pastor-Soler N; Ameen N; Laprade R; Ramesh V; Breton S J Biol Chem; 2008 Feb; 283(5):2986-96. PubMed ID: 18055461 [TBL] [Abstract][Full Text] [Related]
3. A sequence upstream of canonical PDZ-binding motif within CFTR COOH-terminus enhances NHERF1 interaction. Sharma N; LaRusch J; Sosnay PR; Gottschalk LB; Lopez AP; Pellicore MJ; Evans T; Davis E; Atalar M; Na CH; Rosson GD; Belchis D; Milewski M; Pandey A; Cutting GR Am J Physiol Lung Cell Mol Physiol; 2016 Dec; 311(6):L1170-L1182. PubMed ID: 27793802 [TBL] [Abstract][Full Text] [Related]
4. Role of the scaffold protein RACK1 in apical expression of CFTR. Auerbach M; Liedtke CM Am J Physiol Cell Physiol; 2007 Jul; 293(1):C294-304. PubMed ID: 17409124 [TBL] [Abstract][Full Text] [Related]
5. Structural insights into PDZ-mediated interaction of NHERF2 and LPA(2), a cellular event implicated in CFTR channel regulation. Holcomb J; Jiang Y; Lu G; Trescott L; Brunzelle J; Sirinupong N; Li C; Naren AP; Yang Z Biochem Biophys Res Commun; 2014 Mar; 446(1):399-403. PubMed ID: 24613836 [TBL] [Abstract][Full Text] [Related]
6. Synergistic effects of cystic fibrosis transmembrane conductance regulator and aquaporin-9 in the rat epididymis. Cheung KH; Leung CT; Leung GP; Wong PY Biol Reprod; 2003 May; 68(5):1505-10. PubMed ID: 12606488 [TBL] [Abstract][Full Text] [Related]
7. VIP regulates CFTR membrane expression and function in Calu-3 cells by increasing its interaction with NHERF1 and P-ERM in a VPAC1- and PKCε-dependent manner. Alshafie W; Chappe FG; Li M; Anini Y; Chappe VM Am J Physiol Cell Physiol; 2014 Jul; 307(1):C107-19. PubMed ID: 24788249 [TBL] [Abstract][Full Text] [Related]
8. EPAC1 activation by cAMP stabilizes CFTR at the membrane by promoting its interaction with NHERF1. Lobo MJ; Amaral MD; Zaccolo M; Farinha CM J Cell Sci; 2016 Jul; 129(13):2599-612. PubMed ID: 27206858 [TBL] [Abstract][Full Text] [Related]
9. Beta-oestradiol rescues DeltaF508CFTR functional expression in human cystic fibrosis airway CFBE41o- cells through the up-regulation of NHERF1. Fanelli T; Cardone RA; Favia M; Guerra L; Zaccolo M; Monterisi S; De Santis T; Riccardi SM; Reshkin SJ; Casavola V Biol Cell; 2008 Jul; 100(7):399-412. PubMed ID: 18184109 [TBL] [Abstract][Full Text] [Related]
10. Na+/H+ exchanger regulatory factor isoform 1 overexpression modulates cystic fibrosis transmembrane conductance regulator (CFTR) expression and activity in human airway 16HBE14o- cells and rescues DeltaF508 CFTR functional expression in cystic fibrosis cells. Guerra L; Fanelli T; Favia M; Riccardi SM; Busco G; Cardone RA; Carrabino S; Weinman EJ; Reshkin SJ; Conese M; Casavola V J Biol Chem; 2005 Dec; 280(49):40925-33. PubMed ID: 16203733 [TBL] [Abstract][Full Text] [Related]
11. Protein kinase C epsilon-dependent regulation of cystic fibrosis transmembrane regulator involves binding to a receptor for activated C kinase (RACK1) and RACK1 binding to Na+/H+ exchange regulatory factor. Liedtke CM; Yun CH; Kyle N; Wang D J Biol Chem; 2002 Jun; 277(25):22925-33. PubMed ID: 11956211 [TBL] [Abstract][Full Text] [Related]
12. Specificity of NHERF1 regulation of GPCR signaling and function in human airway smooth muscle. Pera T; Tompkins E; Katz M; Wang B; Deshpande DA; Weinman EJ; Penn RB FASEB J; 2019 Aug; 33(8):9008-9016. PubMed ID: 31042404 [TBL] [Abstract][Full Text] [Related]
13. A molecular switch in the scaffold NHERF1 enables misfolded CFTR to evade the peripheral quality control checkpoint. Loureiro CA; Matos AM; Dias-Alves Â; Pereira JF; Uliyakina I; Barros P; Amaral MD; Matos P Sci Signal; 2015 May; 8(377):ra48. PubMed ID: 25990958 [TBL] [Abstract][Full Text] [Related]
15. Aquaporin-9 is expressed in rat Sertoli cells and interacts with the cystic fibrosis transmembrane conductance regulator. Jesus TT; Bernardino RL; Martins AD; Sá R; Sousa M; Alves MG; Oliveira PF IUBMB Life; 2014 Sep; 66(9):639-44. PubMed ID: 25270793 [TBL] [Abstract][Full Text] [Related]
16. High-resolution imaging of the actin cytoskeleton and epithelial sodium channel, CFTR, and aquaporin-9 localization in the vas deferens. Sharma S; Kumaran GK; Hanukoglu I Mol Reprod Dev; 2020 Feb; 87(2):305-319. PubMed ID: 31950584 [TBL] [Abstract][Full Text] [Related]
17. Peptide binding consensus of the NHE-RF-PDZ1 domain matches the C-terminal sequence of cystic fibrosis transmembrane conductance regulator (CFTR). Wang S; Raab RW; Schatz PJ; Guggino WB; Li M FEBS Lett; 1998 May; 427(1):103-8. PubMed ID: 9613608 [TBL] [Abstract][Full Text] [Related]
18. Aquaporin 3 cloned from Xenopus laevis is regulated by the cystic fibrosis transmembrane conductance regulator. Schreiber R; Pavenstädt H; Greger R; Kunzelmann K FEBS Lett; 2000 Jun; 475(3):291-5. PubMed ID: 10869574 [TBL] [Abstract][Full Text] [Related]
19. An apical PDZ protein anchors the cystic fibrosis transmembrane conductance regulator to the cytoskeleton. Short DB; Trotter KW; Reczek D; Kreda SM; Bretscher A; Boucher RC; Stutts MJ; Milgram SL J Biol Chem; 1998 Jul; 273(31):19797-801. PubMed ID: 9677412 [TBL] [Abstract][Full Text] [Related]
20. Regulatory interaction between the cystic fibrosis transmembrane conductance regulator and HCO3- salvage mechanisms in model systems and the mouse pancreatic duct. Ahn W; Kim KH; Lee JA; Kim JY; Choi JY; Moe OW; Milgram SL; Muallem S; Lee MG J Biol Chem; 2001 May; 276(20):17236-43. PubMed ID: 11278980 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]