These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 18055529)

  • 1. Cytoskeletal bundle mechanics.
    Bathe M; Heussinger C; Claessens MM; Bausch AR; Frey E
    Biophys J; 2008 Apr; 94(8):2955-64. PubMed ID: 18055529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Actin-binding proteins sensitively mediate F-actin bundle stiffness.
    Claessens MM; Bathe M; Frey E; Bausch AR
    Nat Mater; 2006 Sep; 5(9):748-53. PubMed ID: 16921360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single Actin Bundle Rheology.
    Strehle D; Mollenkopf P; Glaser M; Golde T; Schuldt C; Käs JA; Schnauß J
    Molecules; 2017 Oct; 22(10):. PubMed ID: 29064446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational analysis of viscoelastic properties of crosslinked actin networks.
    Kim T; Hwang W; Lee H; Kamm RD
    PLoS Comput Biol; 2009 Jul; 5(7):e1000439. PubMed ID: 19609348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discontinuous unbinding transitions of filament bundles.
    Kierfeld J; Kühne T; Lipowsky R
    Phys Rev Lett; 2005 Jul; 95(3):038102. PubMed ID: 16090774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive Response of Actin Bundles under Mechanical Stress.
    Rückerl F; Lenz M; Betz T; Manzi J; Martiel JL; Safouane M; Paterski-Boujemaa R; Blanchoin L; Sykes C
    Biophys J; 2017 Sep; 113(5):1072-1079. PubMed ID: 28877490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiscale impact of nucleotides and cations on the conformational equilibrium, elasticity and rheology of actin filaments and crosslinked networks.
    Bidone TC; Kim T; Deriu MA; Morbiducci U; Kamm RD
    Biomech Model Mechanobiol; 2015 Oct; 14(5):1143-55. PubMed ID: 25708806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Filament rigidity and connectivity tune the deformation modes of active biopolymer networks.
    Stam S; Freedman SL; Banerjee S; Weirich KL; Dinner AR; Gardel ML
    Proc Natl Acad Sci U S A; 2017 Nov; 114(47):E10037-E10045. PubMed ID: 29114058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Form-finding model shows how cytoskeleton network stiffness is realized.
    Gong J; Zhang D; Tseng Y; Li B; Wirtz D; Schafer BW
    PLoS One; 2013; 8(10):e77417. PubMed ID: 24146992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strain hardening, avalanches, and strain softening in dense cross-linked actin networks.
    Aström JA; Kumar PB; Vattulainen I; Karttunen M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 1):051913. PubMed ID: 18643108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geometrical and mechanical properties control actin filament organization.
    Letort G; Politi AZ; Ennomani H; Théry M; Nedelec F; Blanchoin L
    PLoS Comput Biol; 2015 May; 11(5):e1004245. PubMed ID: 26016478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Viscoelasticity of cross-linked actin networks: experimental tests, mechanical modeling and finite-element analysis.
    Unterberger MJ; Schmoller KM; Wurm C; Bausch AR; Holzapfel GA
    Acta Biomater; 2013 Jul; 9(7):7343-53. PubMed ID: 23523535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Force Production by a Bundle of Growing Actin Filaments Is Limited by Its Mechanical Properties.
    Martiel JL; Michelot A; Boujemaa-Paterski R; Blanchoin L; Berro J
    Biophys J; 2020 Jan; 118(1):182-192. PubMed ID: 31791547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remarkable structural transformations of actin bundles are driven by their initial polarity, motor activity, crosslinking, and filament treadmilling.
    Chandrasekaran A; Upadhyaya A; Papoian GA
    PLoS Comput Biol; 2019 Jul; 15(7):e1007156. PubMed ID: 31287817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Statics and dynamics of the wormlike bundle model.
    Heussinger C; Schüller F; Frey E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 1):021904. PubMed ID: 20365592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Attachment conditions control actin filament buckling and the production of forces.
    Berro J; Michelot A; Blanchoin L; Kovar DR; Martiel JL
    Biophys J; 2007 Apr; 92(7):2546-58. PubMed ID: 17208983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Persistence length of fascin-cross-linked actin filament bundles in solution and the in vitro motility assay.
    Takatsuki H; Bengtsson E; Månsson A
    Biochim Biophys Acta; 2014 Jun; 1840(6):1933-42. PubMed ID: 24418515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origin of twist-bend coupling in actin filaments.
    De La Cruz EM; Roland J; McCullough BR; Blanchoin L; Martiel JL
    Biophys J; 2010 Sep; 99(6):1852-60. PubMed ID: 20858430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphological Transformation and Force Generation of Active Cytoskeletal Networks.
    Bidone TC; Jung W; Maruri D; Borau C; Kamm RD; Kim T
    PLoS Comput Biol; 2017 Jan; 13(1):e1005277. PubMed ID: 28114384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanics of individual keratin bundles in living cells.
    Nolting JF; Möbius W; Köster S
    Biophys J; 2014 Dec; 107(11):2693-9. PubMed ID: 25468348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.