BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 18055586)

  • 1. Characterization of the PHO1 gene family and the responses to phosphate deficiency of Physcomitrella patens.
    Wang Y; Secco D; Poirier Y
    Plant Physiol; 2008 Feb; 146(2):646-56. PubMed ID: 18055586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and expression profile of the Arabidopsis PHO1 gene family indicates a broad role in inorganic phosphate homeostasis.
    Wang Y; Ribot C; Rezzonico E; Poirier Y
    Plant Physiol; 2004 May; 135(1):400-11. PubMed ID: 15122012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the rice PHO1 gene family reveals a key role for OsPHO1;2 in phosphate homeostasis and the evolution of a distinct clade in dicotyledons.
    Secco D; Baumann A; Poirier Y
    Plant Physiol; 2010 Mar; 152(3):1693-704. PubMed ID: 20081045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Members of the PHO1 gene family show limited functional redundancy in phosphate transfer to the shoot, and are regulated by phosphate deficiency via distinct pathways.
    Stefanovic A; Ribot C; Rouached H; Wang Y; Chong J; Belbahri L; Delessert S; Poirier Y
    Plant J; 2007 Jun; 50(6):982-94. PubMed ID: 17461783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A CRISPR/Cas9 deletion into the phosphate transporter SlPHO1;1 reveals its role in phosphate nutrition of tomato seedlings.
    Zhao P; You Q; Lei M
    Physiol Plant; 2019 Dec; 167(4):556-563. PubMed ID: 30537089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The EXS Domain of PHO1 Participates in the Response of Shoots to Phosphate Deficiency via a Root-to-Shoot Signal.
    Wege S; Khan GA; Jung JY; Vogiatzaki E; Pradervand S; Aller I; Meyer AJ; Poirier Y
    Plant Physiol; 2016 Jan; 170(1):385-400. PubMed ID: 26546667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Does the core circadian clock in the moss Physcomitrella patens (Bryophyta) comprise a single loop?
    Holm K; Källman T; Gyllenstrand N; Hedman H; Lagercrantz U
    BMC Plant Biol; 2010 Jun; 10():109. PubMed ID: 20550695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Germin-like protein gene family of a moss, Physcomitrella patens, phylogenetically falls into two characteristic new clades.
    Nakata M; Watanabe Y; Sakurai Y; Hashimoto Y; Matsuzaki M; Takahashi Y; Satoh T
    Plant Mol Biol; 2004 Oct; 56(3):381-95. PubMed ID: 15604751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of two genes, Sig1 and Sig2, encoding distinct plastid sigma factors(1) in the moss Physcomitrella patens: phylogenetic relationships to plastid sigma factors in higher plants.
    Hara K; Morita M; Takahashi R; Sugita M; Kato S; Aoki S
    FEBS Lett; 2001 Jun; 499(1-2):87-91. PubMed ID: 11418118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization and functional analysis of ABSCISIC ACID INSENSITIVE3-like genes from Physcomitrella patens.
    Marella HH; Sakata Y; Quatrano RS
    Plant J; 2006 Jun; 46(6):1032-44. PubMed ID: 16805735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biological implications of the occurrence of 32 members of the XTH (xyloglucan endotransglucosylase/hydrolase) family of proteins in the bryophyte Physcomitrella patens.
    Yokoyama R; Uwagaki Y; Sasaki H; Harada T; Hiwatashi Y; Hasebe M; Nishitani K
    Plant J; 2010 Nov; 64(4):645-56. PubMed ID: 20822502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression analyses of three members of the AtPHO1 family reveal differential interactions between signaling pathways involved in phosphate deficiency and the responses to auxin, cytokinin, and abscisic acid.
    Ribot C; Wang Y; Poirier Y
    Planta; 2008 Apr; 227(5):1025-36. PubMed ID: 18094993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein kinase PpCIPK1 modulates plant salt tolerance in Physcomitrella patens.
    Xiao F; Li X; He J; Zhao J; Wu G; Gong Q; Zhou H; Lin H
    Plant Mol Biol; 2021 Apr; 105(6):685-696. PubMed ID: 33543389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analysis of the SBP-box gene families in P. patens and seed plants.
    Riese M; Höhmann S; Saedler H; Münster T; Huijser P
    Gene; 2007 Oct; 401(1-2):28-37. PubMed ID: 17689888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional divergence of the glutathione S-transferase supergene family in Physcomitrella patens reveals complex patterns of large gene family evolution in land plants.
    Liu YJ; Han XM; Ren LL; Yang HL; Zeng QY
    Plant Physiol; 2013 Feb; 161(2):773-86. PubMed ID: 23188805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative Proteomic Analysis of Wild-Type
    Luo W; Komatsu S; Abe T; Matsuura H; Takahashi K
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32093080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional characterization of the rice SPX-MFS family reveals a key role of OsSPX-MFS1 in controlling phosphate homeostasis in leaves.
    Wang C; Huang W; Ying Y; Li S; Secco D; Tyerman S; Whelan J; Shou H
    New Phytol; 2012 Oct; 196(1):139-148. PubMed ID: 22803610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulatory Mechanism of ABA and ABI3 on Vegetative Development in the Moss
    Zhao M; Li Q; Chen Z; Lv Q; Bao F; Wang X; He Y
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30213069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary insights into FYVE and PHOX effector proteins from the moss Physcomitrella patens.
    Agudelo-Romero P; Fortes AM; Suárez T; Lascano HR; Saavedra L
    Planta; 2020 Feb; 251(3):62. PubMed ID: 32040768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loss of GH3 function does not affect phytochrome-mediated development in a moss, Physcomitrella patens.
    Bierfreund NM; Tintelnot S; Reski R; Decker EL
    J Plant Physiol; 2004 Jul; 161(7):823-35. PubMed ID: 15310072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.