BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 18055594)

  • 1. Binding site determinants for the LysR-type transcriptional regulator PcaQ in the legume endosymbiont Sinorhizobium meliloti.
    MacLean AM; Anstey MI; Finan TM
    J Bacteriol; 2008 Feb; 190(4):1237-46. PubMed ID: 18055594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of PcaQ, a LysR-type transcriptional activator required for catabolism of phenolic compounds, from Agrobacterium tumefaciens.
    Parke D
    J Bacteriol; 1996 Jan; 178(1):266-72. PubMed ID: 8550427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The LysR-type PcaQ protein regulates expression of a protocatechuate-inducible ABC-type transport system in Sinorhizobium meliloti.
    MacLean AM; Haerty W; Golding GB; Finan TM
    Microbiology (Reading); 2011 Sep; 157(Pt 9):2522-2533. PubMed ID: 21700663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conservation of PcaQ, a transcriptional activator of pca genes for catabolism of phenolic compounds, in Agrobacterium tumefaciens and Rhizobium species.
    Parke D
    J Bacteriol; 1996 Jun; 178(12):3671-5. PubMed ID: 8655573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the beta-ketoadipate pathway in Sinorhizobium meliloti.
    MacLean AM; MacPherson G; Aneja P; Finan TM
    Appl Environ Microbiol; 2006 Aug; 72(8):5403-13. PubMed ID: 16885292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supraoperonic clustering of pca genes for catabolism of the phenolic compound protocatechuate in Agrobacterium tumefaciens.
    Parke D
    J Bacteriol; 1995 Jul; 177(13):3808-17. PubMed ID: 7601847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RpoN of Rhizobium leguminosarum bv. viciae strain VF39SM plays a central role in FnrN-dependent microaerobic regulation of genes involved in nitrogen fixation.
    Clark SR; Oresnik IJ; Hynes MF
    Mol Gen Genet; 2001 Jan; 264(5):623-33. PubMed ID: 11212917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two new Sinorhizobium meliloti LysR-type transcriptional regulators required for nodulation.
    Luo L; Yao SY; Becker A; Rüberg S; Yu GQ; Zhu JB; Cheng HP
    J Bacteriol; 2005 Jul; 187(13):4562-72. PubMed ID: 15968067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Negative Regulation of Ectoine Uptake and Catabolism in Sinorhizobium meliloti: Characterization of the EhuR Gene.
    Yu Q; Cai H; Zhang Y; He Y; Chen L; Merritt J; Zhang S; Dong Z
    J Bacteriol; 2017 Jan; 199(1):. PubMed ID: 27795315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of the LrhA subfamily of transcriptional regulators from Sinorhizobium meliloti.
    Qi M; Luo L; Cheng H; Zhu J; Yu G
    Acta Biochim Biophys Sin (Shanghai); 2008 Feb; 40(2):166-73. PubMed ID: 18235979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Positive regulation of phenolic catabolism in Agrobacterium tumefaciens by the pcaQ gene in response to beta-carboxy-cis,cis-muconate.
    Parke D
    J Bacteriol; 1993 Jun; 175(11):3529-35. PubMed ID: 8501056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptional Activation of Virulence Genes of Rhizobium etli.
    Wang L; Lacroix B; Guo J; Citovsky V
    J Bacteriol; 2017 Mar; 199(6):. PubMed ID: 28069822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A rhizobial homolog of IHF stimulates transcription of dctA in Rhizobium leguminosarum but not in Sinorhizobium meliloti.
    Sojda J; Gu B; Lee J; Hoover TR; Nixon BT
    Gene; 1999 Oct; 238(2):489-500. PubMed ID: 10570977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A homolog of the Rhizobium meliloti nitrogen fixation gene fixN is involved in the production of a microaerobically induced oxidase activity in the phytopathogenic bacterium Agrobacterium tumefaciens.
    Schlüter A; Rüberg S; Krämer M; Weidner S; Priefer UB
    Mol Gen Genet; 1995 Apr; 247(2):206-15. PubMed ID: 7753030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. argC Orthologs from Rhizobiales show diverse profiles of transcriptional efficiency and functionality in Sinorhizobium meliloti.
    Díaz R; Vargas-Lagunas C; Villalobos MA; Peralta H; Mora Y; Encarnación S; Girard L; Mora J
    J Bacteriol; 2011 Jan; 193(2):460-72. PubMed ID: 21075924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a hydroxyproline transport system in the legume endosymbiont Sinorhizobium meliloti.
    Maclean AM; White CE; Fowler JE; Finan TM
    Mol Plant Microbe Interact; 2009 Sep; 22(9):1116-27. PubMed ID: 19656046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutational analysis of GstI protein, a glutamine synthetase translational inhibitor of Rhizobium leguminosarum.
    Napolitani C; Mandrich L; Riccio A; Lamberti A; Manco G; Patriarca EJ
    FEBS Lett; 2004 Jan; 558(1-3):45-51. PubMed ID: 14759514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The regulatory protein MucR binds to a short DNA region located upstream of the mucR coding region in Rhizobium meliloti.
    Bertram-Drogatz PA; Rüberg S; Becker A; Pühler A
    Mol Gen Genet; 1997 May; 254(5):529-38. PubMed ID: 9197412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic characterization of a Rhizobium meliloti lactose utilization locus.
    Jelesko JG; Leigh JA
    Mol Microbiol; 1994 Jan; 11(1):165-73. PubMed ID: 8145640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Rhizobium leguminosarum bv. trifolii RosR: transcriptional regulator involved in exopolysaccharide production.
    Janczarek M; Skorupska A
    Mol Plant Microbe Interact; 2007 Jul; 20(7):867-81. PubMed ID: 17601173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.