These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 18055880)

  • 41. Ascorbic acid promotes recovery of cellular functions following toxicant-induced injury.
    Nowak G; Carter CA; Schnellmann RG
    Toxicol Appl Pharmacol; 2000 Aug; 167(1):37-45. PubMed ID: 10936077
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Heparin-binding epidermal growth factor and Src family kinases in proliferation of renal epithelial cells.
    Zhuang S; Kinsey GR; Rasbach K; Schnellmann RG
    Am J Physiol Renal Physiol; 2008 Mar; 294(3):F459-68. PubMed ID: 18171996
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of the medium HCO3-/CO2 buffer system on differentiation and intermediary metabolism properties of rabbit proximal tubule cells in primary culture.
    Monteil C; Marouillat S; Fillastre JP; Morin JP
    Epithelial Cell Biol; 1995; 4(3):131-9. PubMed ID: 8971488
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Arachidonic acid release in renal proximal tubule cell injuries and death.
    Schnellmann RG; Yang X; Carrick JB
    J Biochem Toxicol; 1994 Aug; 9(4):211-7. PubMed ID: 7853355
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Substrate modulation of fatty acid effects on energization and respiration of kidney proximal tubules during hypoxia/reoxygenation.
    Bienholz A; Al-Taweel A; Roeser NF; Kribben A; Feldkamp T; Weinberg JM
    PLoS One; 2014; 9(4):e94584. PubMed ID: 24728405
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Intracellular cystine loading causes proximal tubule respiratory dysfunction: effect of glycine.
    Sakarcan A; Aricheta R; Baum M
    Pediatr Res; 1992 Dec; 32(6):710-3. PubMed ID: 1337587
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Anaerobic and aerobic pathways for salvage of proximal tubules from hypoxia-induced mitochondrial injury.
    Weinberg JM; Venkatachalam MA; Roeser NF; Saikumar P; Dong Z; Senter RA; Nissim I
    Am J Physiol Renal Physiol; 2000 Nov; 279(5):F927-43. PubMed ID: 11053054
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The role of altered mitochondrial function in citrinin-induced toxicity to rat renal proximal tubule suspensions.
    Aleo MD; Wyatt RD; Schnellmann RG
    Toxicol Appl Pharmacol; 1991 Jul; 109(3):455-63. PubMed ID: 1853344
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A high-throughput respirometric assay for mitochondrial biogenesis and toxicity.
    Beeson CC; Beeson GC; Schnellmann RG
    Anal Biochem; 2010 Sep; 404(1):75-81. PubMed ID: 20465991
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mitochondrial calpain 10 is degraded by Lon protease after oxidant injury.
    Smith MA; Schnellmann RG
    Arch Biochem Biophys; 2012 Jan; 517(2):144-52. PubMed ID: 22179018
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Regulation of dedifferentiation and redifferentiation in renal proximal tubular cells by the epidermal growth factor receptor.
    Hallman MA; Zhuang S; Schnellmann RG
    J Pharmacol Exp Ther; 2008 May; 325(2):520-8. PubMed ID: 18270318
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evidence that 3-hydroxyisobutyric acid inhibits key enzymes of energy metabolism in cerebral cortex of young rats.
    Viegas CM; da Costa Ferreira G; Schuck PF; Tonin AM; Zanatta A; de Souza Wyse AT; Dutra-Filho CS; Wannmacher CM; Wajner M
    Int J Dev Neurosci; 2008; 26(3-4):293-9. PubMed ID: 18329219
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Studies on final differentiation of rat renal proximal tubular cells in culture.
    Larsson S; Aperia A; Lechene C
    Am J Physiol; 1986 Sep; 251(3 Pt 1):C455-64. PubMed ID: 3019149
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Oxidative damage of rat liver mitochondria during exposure to t-butyl hydroperoxide. Role of Ca²⁺ ions in oxidative processes.
    Zavodnik IB; Dremza IK; Cheshchevik VT; Lapshina EA; Zamaraewa M
    Life Sci; 2013 Jun; 92(23):1110-7. PubMed ID: 23643634
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Chromium(VI) interaction with plant and animal mitochondrial bioenergetics: a comparative study.
    Fernandes MA; Santos MS; Alpoim MC; Madeira VM; Vicente JA
    J Biochem Mol Toxicol; 2002; 16(2):53-63. PubMed ID: 11979422
    [TBL] [Abstract][Full Text] [Related]  

  • 56. 5-HT2 Receptor Regulation of Mitochondrial Genes: Unexpected Pharmacological Effects of Agonists and Antagonists.
    Harmon JL; Wills LP; McOmish CE; Demireva EY; Gingrich JA; Beeson CC; Schnellmann RG
    J Pharmacol Exp Ther; 2016 Apr; 357(1):1-9. PubMed ID: 26787771
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Regeneration of renal proximal tubule cells in primary culture following toxicant injury: response to growth factors.
    Kays SE; Schnellmann RG
    Toxicol Appl Pharmacol; 1995 Jun; 132(2):273-80. PubMed ID: 7785054
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cell-permeable succinate prodrugs bypass mitochondrial complex I deficiency.
    Ehinger JK; Piel S; Ford R; Karlsson M; Sjövall F; Frostner EÅ; Morota S; Taylor RW; Turnbull DM; Cornell C; Moss SJ; Metzsch C; Hansson MJ; Fliri H; Elmér E
    Nat Commun; 2016 Aug; 7():12317. PubMed ID: 27502960
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Improved culture conditions stimulate gluconeogenesis in primary cultures of renal proximal tubule cells.
    Nowak G; Schnellmann RG
    Am J Physiol; 1995 Apr; 268(4 Pt 1):C1053-61. PubMed ID: 7733227
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Primary cultures of rabbit renal proximal tubule cells. III. Comparative cytotoxicity of inorganic and organic mercury.
    Aleo MD; Taub ML; Kostyniak PJ
    Toxicol Appl Pharmacol; 1992 Feb; 112(2):310-7. PubMed ID: 1539167
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.