These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 18056074)
1. Functional gene losses occur with minimal size reduction in the plastid genome of the parasitic liverwort Aneura mirabilis. Wickett NJ; Zhang Y; Hansen SK; Roper JM; Kuehl JV; Plock SA; Wolf PG; DePamphilis CW; Boore JL; Goffinet B Mol Biol Evol; 2008 Feb; 25(2):393-401. PubMed ID: 18056074 [TBL] [Abstract][Full Text] [Related]
2. Distribution and evolution of pseudogenes, gene losses, and a gene rearrangement in the plastid genome of the nonphotosynthetic liverwort, Aneura mirabilis (Metzgeriales, Jungermanniopsida). Wickett NJ; Fan Y; Lewis PO; Goffinet B J Mol Evol; 2008 Jul; 67(1):111-22. PubMed ID: 18594897 [TBL] [Abstract][Full Text] [Related]
3. Frequent pseudogenization and loss of the plastid-encoded sulfate-transport gene cysA throughout the evolution of liverworts. Wickett NJ; Forrest LL; Budke JM; Shaw B; Goffinet B Am J Bot; 2011 Aug; 98(8):1263-75. PubMed ID: 21821590 [TBL] [Abstract][Full Text] [Related]
4. A comparison of group II introns of plastid tRNALysUUU genes encoding maturase protein. Jankowiak K; Lesicka J; Pacak A; Rybarczyk A; Szweykowska-Kulińska Z Cell Mol Biol Lett; 2004; 9(2):239-51. PubMed ID: 15213805 [TBL] [Abstract][Full Text] [Related]
5. Evolution of a pseudogene: exclusive survival of a functional mitochondrial nad7 gene supports Haplomitrium as the earliest liverwort lineage and proposes a secondary loss of RNA editing in Marchantiidae. Groth-Malonek M; Wahrmund U; Polsakiewicz M; Knoop V Mol Biol Evol; 2007 Apr; 24(4):1068-74. PubMed ID: 17283365 [TBL] [Abstract][Full Text] [Related]
6. Loss of photosynthetic and chlororespiratory genes from the plastid genome of a parasitic flowering plant. dePamphilis CW; Palmer JD Nature; 1990 Nov; 348(6299):337-9. PubMed ID: 2250706 [TBL] [Abstract][Full Text] [Related]
7. Two types of plastid ftsZ genes in the liverwort Marchantia polymorpha. Araki Y; Takio S; Ono K; Takano H Protoplasma; 2003 Jun; 221(3-4):163-73. PubMed ID: 12802623 [TBL] [Abstract][Full Text] [Related]
8. Sequencing and analysis of plastid genome in mycoheterotrophic orchid Neottia nidus-avis. Logacheva MD; Schelkunov MI; Penin AA Genome Biol Evol; 2011; 3():1296-303. PubMed ID: 21971517 [TBL] [Abstract][Full Text] [Related]
9. The complete plastid genome sequence of the haptophyte Emiliania huxleyi: a comparison to other plastid genomes. Sánchez Puerta MV; Bachvaroff TR; Delwiche CF DNA Res; 2005; 12(2):151-6. PubMed ID: 16303746 [TBL] [Abstract][Full Text] [Related]
10. Characterization of four nuclear-encoded plastid RNA polymerase sigma factor genes in the liverwort Marchantia polymorpha: blue-light- and multiple stress-responsive SIG5 was acquired early in the emergence of terrestrial plants. Kanazawa T; Ishizaki K; Kohchi T; Hanaoka M; Tanaka K Plant Cell Physiol; 2013 Oct; 54(10):1736-48. PubMed ID: 23975891 [TBL] [Abstract][Full Text] [Related]
11. Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. Wolfe KH; Morden CW; Palmer JD Proc Natl Acad Sci U S A; 1992 Nov; 89(22):10648-52. PubMed ID: 1332054 [TBL] [Abstract][Full Text] [Related]
12. The non-photosynthetic, pathogenic green alga Helicosporidium sp. has retained a modified, functional plastid genome. Tartar A; Boucias DG FEMS Microbiol Lett; 2004 Apr; 233(1):153-7. PubMed ID: 15043882 [TBL] [Abstract][Full Text] [Related]
13. The complete chloroplast genome sequence of Pelargonium x hortorum: organization and evolution of the largest and most highly rearranged chloroplast genome of land plants. Chumley TW; Palmer JD; Mower JP; Fourcade HM; Calie PJ; Boore JL; Jansen RK Mol Biol Evol; 2006 Nov; 23(11):2175-90. PubMed ID: 16916942 [TBL] [Abstract][Full Text] [Related]
14. Exceptional reduction of the plastid genome of saguaro cactus (Carnegiea gigantea): Loss of the ndh gene suite and inverted repeat. Sanderson MJ; Copetti D; Búrquez A; Bustamante E; Charboneau JL; Eguiarte LE; Kumar S; Lee HO; Lee J; McMahon M; Steele K; Wing R; Yang TJ; Zwickl D; Wojciechowski MF Am J Bot; 2015 Jul; 102(7):1115-27. PubMed ID: 26199368 [TBL] [Abstract][Full Text] [Related]
15. Genes of cyanobacterial origin in plant nuclear genomes point to a heterocyst-forming plastid ancestor. Deusch O; Landan G; Roettger M; Gruenheit N; Kowallik KV; Allen JF; Martin W; Dagan T Mol Biol Evol; 2008 Apr; 25(4):748-61. PubMed ID: 18222943 [TBL] [Abstract][Full Text] [Related]
16. Plastid genome structure and loss of photosynthetic ability in the parasitic genus Cuscuta. Revill MJ; Stanley S; Hibberd JM J Exp Bot; 2005 Sep; 56(419):2477-86. PubMed ID: 16061507 [TBL] [Abstract][Full Text] [Related]
17. Plastid engineering in land plants: a conservative genome is open to change. Maliga P; Carrer H; Kanevski I; Staub J; Svab Z Philos Trans R Soc Lond B Biol Sci; 1993 Nov; 342(1301):203-8. PubMed ID: 8115448 [TBL] [Abstract][Full Text] [Related]
18. Isolation of precise plastid deletion mutants by homology-based excision: a resource for site-directed mutagenesis, multi-gene changes and high-throughput plastid transformation. Kode V; Mudd EA; Iamtham S; Day A Plant J; 2006 Jun; 46(5):901-9. PubMed ID: 16709203 [TBL] [Abstract][Full Text] [Related]
19. Investigating the path of plastid genome degradation in an early-transitional clade of heterotrophic orchids, and implications for heterotrophic angiosperms. Barrett CF; Freudenstein JV; Li J; Mayfield-Jones DR; Perez L; Pires JC; Santos C Mol Biol Evol; 2014 Dec; 31(12):3095-112. PubMed ID: 25172958 [TBL] [Abstract][Full Text] [Related]
20. Rapid evolution of the plastid translational apparatus in a nonphotosynthetic plant: loss or accelerated sequence evolution of tRNA and ribosomal protein genes. Wolfe KH; Morden CW; Ems SC; Palmer JD J Mol Evol; 1992 Oct; 35(4):304-17. PubMed ID: 1404416 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]