BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 1805610)

  • 1. Effect of repeated occupational exposure to lead, cessation of exposure, and chelation on levels of lead in bone.
    Hu H; Pepper L; Goldman R
    Am J Ind Med; 1991; 20(6):723-35. PubMed ID: 1805610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clinical application of in vivo tibial K-XRF for monitoring lead stores.
    Wedeen RP; Ty A; Udasin I; Favata EA; Jones KW
    Arch Environ Health; 1995; 50(5):355-61. PubMed ID: 7574889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reducing bone lead content by chelation treatment in chronic lead poisoning: an in vivo X-ray fluorescence and bone biopsy study.
    Batuman V; Wedeen RP; Bogden JD; Balestra DJ; Jones K; Schidlovsky G
    Environ Res; 1989 Feb; 48(1):70-5. PubMed ID: 2492468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Longitudinal changes in bone lead concentration: implications for modelling of human bone lead metabolism.
    Brito JA; McNeill FE; Stronach I; Webber CE; Wells S; Richard N; Chettle DR
    J Environ Monit; 2001 Aug; 3(4):343-51. PubMed ID: 11523432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removing lead from bone: clinical implications of bone lead stores.
    Wedeen RP
    Neurotoxicology; 1992; 13(4):843-52. PubMed ID: 1302310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elimination kinetics of blood lead in workers with chronic lead intoxication.
    Hryhorczuk DO; Rabinowitz MB; Hessl SM; Hoffman D; Hogan MM; Mallin K; Finch H; Orris P; Berman E
    Am J Ind Med; 1985; 8(1):33-42. PubMed ID: 3927718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chelated lead and bone lead.
    Tell I; Somervaille LJ; Nilsson U; Bensryd I; Schütz A; Chettle DR; Scott MC; Skerfving S
    Scand J Work Environ Health; 1992 Apr; 18(2):113-9. PubMed ID: 1604271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-vivo determination of lead in the skeleton after occupational exposure to lead.
    Ahlgren L; Haeger-Aronsen B; Mattsson S; Schütz A
    Br J Ind Med; 1980 May; 37(2):109-13. PubMed ID: 7426460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The relationship between bone lead and hemoglobin.
    Hu H; Watanabe H; Payton M; Korrick S; Rotnitzky A
    JAMA; 1994 Nov; 272(19):1512-7. PubMed ID: 7966843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequential measurements of bone lead content by L X-ray fluorescence in CaNa2EDTA-treated lead-toxic children.
    Rosen JF; Markowitz ME; Bijur PE; Jenks ST; Wielopolski L; Kalef-Ezra JA; Slatkin DN
    Environ Health Perspect; 1991 Feb; 91():57-62. PubMed ID: 1904023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Case of lead nephropathy due to chronic occupational lead exposure].
    Ogata A; Sueta S; Tagawa M
    Nihon Jinzo Gakkai Shi; 2011; 53(2):207-11. PubMed ID: 21516708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A case of amyotrophic lateral sclerosis in electronic parts manufacturing worker exposed to lead.
    Oh SS; Kim EA; Lee SW; Kim MK; Kang SK
    Neurotoxicology; 2007 Mar; 28(2):324-7. PubMed ID: 17374398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of industrial lead poisoning on cytochrome P450 mediated phenazone (antipyrine) hydroxylation.
    Meredith PA; Campbell BC; Moore MR; Goldberg A
    Eur J Clin Pharmacol; 1977 Nov; 12(3):235-9. PubMed ID: 412677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmental lead exposure and progression of chronic renal diseases in patients without diabetes.
    Lin JL; Lin-Tan DT; Hsu KH; Yu CC
    N Engl J Med; 2003 Jan; 348(4):277-86. PubMed ID: 12540640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Behavior of lead and zinc in plasma, erythrocytes, and urine and ALAD in erythrocytes following intravenous infusion of CaEDTA in lead workers.
    Araki S; Aono H; Fukahori M; Tabuki K
    Arch Environ Health; 1984; 39(5):363-7. PubMed ID: 6439129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The distribution of lead in human hemopoietic tissue and spongy bone after lead poisoning and Ca-EDTA chelation therapy. Observations made by atomic absorption spectroscopy, laser microbeam mass analysis and electron microbeam X-ray analysis.
    Flood PR; Schmidt PF; Wesenberg GR; Gadeholt H
    Arch Toxicol; 1988; 62(4):295-300. PubMed ID: 3149183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chelated lead in relation to lead in bone and ALAD genotype.
    Gerhardsson L; Börjesson J; Mattsson S; Schütz A; Skerfving S
    Environ Res; 1999 May; 80(4):389-98. PubMed ID: 10330313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zinc supplementation of chelation therapy in saturnism. Preliminary study.
    Bădulici S; Chirilă M
    Rom J Intern Med; 1992; 30(3):211-5. PubMed ID: 1475600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mobilization and redistribution of lead over the course of calcium disodium ethylenediamine tetraacetate chelation therapy.
    Cory-Slechta DA; Weiss B; Cox C
    J Pharmacol Exp Ther; 1987 Dec; 243(3):804-13. PubMed ID: 3121845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EDTA redistribution of lead and cadmium into the soft tissues in a human with a high lead burden - should DMSA always be used to follow EDTA in such cases?
    Crinnion WJ
    Altern Med Rev; 2011 Jun; 16(2):109-12. PubMed ID: 21649453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.