BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 18056151)

  • 1. Transcranial Doppler and acoustic pressure fluctuations for the assessment of cavitation and thromboembolism in patients with mechanical heart valves.
    Rodriguez RA; Ruel M; Labrosse M; Mesana T
    Interact Cardiovasc Thorac Surg; 2008 Apr; 7(2):179-83. PubMed ID: 18056151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A method to distinguish between gaseous and solid cerebral emboli in patients with prosthetic heart valves.
    Rodriguez RA; Nathan HJ; Ruel M; Rubens F; Dafoe D; Mesana T
    Eur J Cardiothorac Surg; 2009 Jan; 35(1):89-95. PubMed ID: 18952455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solid and gaseous cerebral microembolization after biologic and mechanical aortic valve replacement: investigation with multirange and multifrequency transcranial Doppler ultrasound.
    Guerrieri Wolf L; Choudhary BP; Abu-Omar Y; Taggart DP
    J Thorac Cardiovasc Surg; 2008 Mar; 135(3):512-20. PubMed ID: 18329462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microemboli in aortic valve replacement.
    Nötzold A; Khattab AA; Eggers J
    Expert Rev Cardiovasc Ther; 2006 Nov; 4(6):853-9. PubMed ID: 17173501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intraoperative and postoperative evaluation of cavitation in mechanical heart valve patients.
    Andersen TS; Johansen P; Christensen BO; Paulsen PK; Nygaard H; Hasenkam JM
    Ann Thorac Surg; 2006 Jan; 81(1):34-41. PubMed ID: 16368331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can cavitation bubbles generated by mechanical heart valves be detected by transcranial Doppler?
    Shu MC; Gross JM; Johnson KM
    J Heart Valve Dis; 1995 Sep; 4(5):542-52; discussion 552. PubMed ID: 8581199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of cavitation and the formation of stable bubbles on the Björk-Shiley Monostrut prosthetic heart valve.
    Bachmann C; Kini V; Deutsch S; Fontaine AA; Tarbell JM
    J Heart Valve Dis; 2002 Jan; 11(1):105-13. PubMed ID: 11843495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solid cerebral microemboli and cerebrovascular symptoms in patients with prosthetic heart valves.
    Skjelland M; Michelsen A; Brosstad F; Svennevig JL; Brucher R; Russell D
    Stroke; 2008 Apr; 39(4):1159-64. PubMed ID: 18292387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observation and quantification of gas bubble formation on a mechanical heart valve.
    Lin HY; Bianccucci BA; Deutsch S; Fontaine AA; Tarbell JM
    J Biomech Eng; 2000 Aug; 122(4):304-9. PubMed ID: 11036552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Online automatic discrimination between solid and gaseous cerebral microemboli with the first multifrequency transcranial Doppler.
    Russell D; Brucher R
    Stroke; 2002 Aug; 33(8):1975-80. PubMed ID: 12154248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen inhalation can differentiate gaseous from nongaseous microemboli detected by transcranial Doppler ultrasound.
    Droste DW; Hansberg T; Kemény V; Hammel D; Schulte-Altedorneburg G; Nabavi DG; Kaps M; Scheld HH; Ringelstein EB
    Stroke; 1997 Dec; 28(12):2453-6. PubMed ID: 9412631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro studies of gas bubble formation by mechanical heart valves.
    Biancucci BA; Deutsch S; Geselowitz DB; Tarbell JM
    J Heart Valve Dis; 1999 Mar; 8(2):186-96. PubMed ID: 10224580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gas bubble emboli detected by transcranial Doppler sonography in patients with prosthetic heart valves: a preliminary report.
    Dauzat M; Deklunder G; Aldis A; Rabinovitch M; Burte F; Bret PM
    J Ultrasound Med; 1994 Feb; 13(2):129-35. PubMed ID: 7932957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solid and gaseous cerebral microembolization after biologic and mechanical aortic valve replacement: investigation with multirange and multifrequency transcranial Doppler ultrasound.
    Nowell J; Jahangiri M
    J Thorac Cardiovasc Surg; 2008 Nov; 136(5):1391-2; author reply 1392-3. PubMed ID: 19026846
    [No Abstract]   [Full Text] [Related]  

  • 15. Role of vortices in cavitation formation in the flow across a mechanical heart valve.
    Li CP; Lu PC; Liu JS; Lo CW; Hwang NH
    J Heart Valve Dis; 2008 Jul; 17(4):435-45. PubMed ID: 18751474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Indication of cavitation in mechanical heart valve patients.
    Andersen TS; Johansen P; Paulsen PK; Nygaard H; Hasenkam JM
    J Heart Valve Dis; 2003 Nov; 12(6):790-6. PubMed ID: 14658822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cavitation versus degassing: in vitro study of the microbubble phenomenon observed during echocardiography in patients with mechanical prosthetic cardiac valves.
    Girod G; Jaussi A; Rosset C; De Werra P; Hirt F; Kappenberger L
    Echocardiography; 2002 Oct; 19(7 Pt 1):531-6. PubMed ID: 12376004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Association of homocysteine and smoking with cerebral microemboli in patients with mechanical heart valves: a transcranial Doppler study.
    Mattia A; Azarpazhooh MR; Munoz C; Bogiatzi C; Quantz MA; Spence JD
    Stroke Vasc Neurol; 2017 Dec; 2(4):198-203. PubMed ID: 29507780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic and visual characteristics of cavitation induced by mechanical heart valves.
    Sohn K; Manning KB; Fontaine AA; Tarbell JM; Deutsch S
    J Heart Valve Dis; 2005 Jul; 14(4):551-8. PubMed ID: 16116884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-frequency pressure fluctuations measured in heart valve patients.
    Paulsen PK; Jensen BK; Hasenkam JM; Nygaard H
    J Heart Valve Dis; 1999 Sep; 8(5):482-6; discussion 486-7. PubMed ID: 10517387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.