These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 18056267)

  • 1. Conformational changes in a pore-lining helix coupled to cystic fibrosis transmembrane conductance regulator channel gating.
    Beck EJ; Yang Y; Yaemsiri S; Raghuram V
    J Biol Chem; 2008 Feb; 283(8):4957-66. PubMed ID: 18056267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational change opening the CFTR chloride channel pore coupled to ATP-dependent gating.
    Wang W; Linsdell P
    Biochim Biophys Acta; 2012 Mar; 1818(3):851-60. PubMed ID: 22234285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conserved allosteric hot spots in the transmembrane domains of cystic fibrosis transmembrane conductance regulator (CFTR) channels and multidrug resistance protein (MRP) pumps.
    Wei S; Roessler BC; Chauvet S; Guo J; Hartman JL; Kirk KL
    J Biol Chem; 2014 Jul; 289(29):19942-57. PubMed ID: 24876383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The gating of the CFTR channel.
    Moran O
    Cell Mol Life Sci; 2017 Jan; 74(1):85-92. PubMed ID: 27696113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual roles of the sixth transmembrane segment of the CFTR chloride channel in gating and permeation.
    Bai Y; Li M; Hwang TC
    J Gen Physiol; 2010 Sep; 136(3):293-309. PubMed ID: 20805575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the mechanism of gating defects caused by the R117H mutation in cystic fibrosis transmembrane conductance regulator.
    Yu YC; Sohma Y; Hwang TC
    J Physiol; 2016 Jun; 594(12):3227-44. PubMed ID: 26846474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CFTR channel opening by ATP-driven tight dimerization of its nucleotide-binding domains.
    Vergani P; Lockless SW; Nairn AC; Gadsby DC
    Nature; 2005 Feb; 433(7028):876-80. PubMed ID: 15729345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamics of CFTR channel gating: a spreading conformational change initiates an irreversible gating cycle.
    Csanády L; Nairn AC; Gadsby DC
    J Gen Physiol; 2006 Nov; 128(5):523-33. PubMed ID: 17043148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Altering intracellular pH reveals the kinetic basis of intraburst gating in the CFTR Cl
    Chen JH; Xu W; Sheppard DN
    J Physiol; 2017 Feb; 595(4):1059-1076. PubMed ID: 27779763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The inhibition mechanism of non-phosphorylated Ser768 in the regulatory domain of cystic fibrosis transmembrane conductance regulator.
    Wang G
    J Biol Chem; 2011 Jan; 286(3):2171-82. PubMed ID: 21059651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Positioning of extracellular loop 1 affects pore gating of the cystic fibrosis transmembrane conductance regulator.
    Infield DT; Cui G; Kuang C; McCarty NA
    Am J Physiol Lung Cell Mol Physiol; 2016 Mar; 310(5):L403-14. PubMed ID: 26684250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploiting species differences to understand the CFTR Cl- channel.
    Bose SJ; Scott-Ward TS; Cai Z; Sheppard DN
    Biochem Soc Trans; 2015 Oct; 43(5):975-82. PubMed ID: 26517912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A unified view of cystic fibrosis transmembrane conductance regulator (CFTR) gating: combining the allosterism of a ligand-gated channel with the enzymatic activity of an ATP-binding cassette (ABC) transporter.
    Kirk KL; Wang W
    J Biol Chem; 2011 Apr; 286(15):12813-9. PubMed ID: 21296873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Review. ATP hydrolysis-driven gating in cystic fibrosis transmembrane conductance regulator.
    Muallem D; Vergani P
    Philos Trans R Soc Lond B Biol Sci; 2009 Jan; 364(1514):247-55. PubMed ID: 18957373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational changes in the catalytically inactive nucleotide-binding site of CFTR.
    Csanády L; Mihályi C; Szollosi A; Töröcsik B; Vergani P
    J Gen Physiol; 2013 Jul; 142(1):61-73. PubMed ID: 23752332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The two ATP binding sites of cystic fibrosis transmembrane conductance regulator (CFTR) play distinct roles in gating kinetics and energetics.
    Zhou Z; Wang X; Liu HY; Zou X; Li M; Hwang TC
    J Gen Physiol; 2006 Oct; 128(4):413-22. PubMed ID: 16966475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. State-dependent regulation of cystic fibrosis transmembrane conductance regulator (CFTR) gating by a high affinity Fe3+ bridge between the regulatory domain and cytoplasmic loop 3.
    Wang G
    J Biol Chem; 2010 Dec; 285(52):40438-47. PubMed ID: 20952391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonintegral stoichiometry in CFTR gating revealed by a pore-lining mutation.
    Jih KY; Sohma Y; Hwang TC
    J Gen Physiol; 2012 Oct; 140(4):347-59. PubMed ID: 22966014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Changes Fundamental to Gating of the Cystic Fibrosis Transmembrane Conductance Regulator Anion Channel Pore.
    Linsdell P
    Adv Exp Med Biol; 2017; 925():13-32. PubMed ID: 27311317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A cluster of negative charges at the amino terminal tail of CFTR regulates ATP-dependent channel gating.
    Fu J; Ji HL; Naren AP; Kirk KL
    J Physiol; 2001 Oct; 536(Pt 2):459-70. PubMed ID: 11600681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.