These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

419 related articles for article (PubMed ID: 18056425)

  • 1. Mechanism of mRNA deadenylation: evidence for a molecular interplay between translation termination factor eRF3 and mRNA deadenylases.
    Funakoshi Y; Doi Y; Hosoda N; Uchida N; Osawa M; Shimada I; Tsujimoto M; Suzuki T; Katada T; Hoshino S
    Genes Dev; 2007 Dec; 21(23):3135-48. PubMed ID: 18056425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological role of the two overlapping poly(A)-binding protein interacting motifs 2 (PAM2) of eukaryotic releasing factor eRF3 in mRNA decay.
    Osawa M; Hosoda N; Nakanishi T; Uchida N; Kimura T; Imai S; Machiyama A; Katada T; Hoshino S; Shimada I
    RNA; 2012 Nov; 18(11):1957-67. PubMed ID: 23019593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative characterization of Tob interactions provides the thermodynamic basis for translation termination-coupled deadenylase regulation.
    Ruan L; Osawa M; Hosoda N; Imai S; Machiyama A; Katada T; Hoshino S; Shimada I
    J Biol Chem; 2010 Sep; 285(36):27624-31. PubMed ID: 20595394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(A) tail degradation in human cells: ATF4 mRNA as a model for biphasic deadenylation.
    Jolles B; Jean-Jean O
    Biochimie; 2021 Jun; 185():128-134. PubMed ID: 33775689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The intrinsic structure of poly(A) RNA determines the specificity of Pan2 and Caf1 deadenylases.
    Tang TTL; Stowell JAW; Hill CH; Passmore LA
    Nat Struct Mol Biol; 2019 Jun; 26(6):433-442. PubMed ID: 31110294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human TOB, an antiproliferative transcription factor, is a poly(A)-binding protein-dependent positive regulator of cytoplasmic mRNA deadenylation.
    Ezzeddine N; Chang TC; Zhu W; Yamashita A; Chen CY; Zhong Z; Yamashita Y; Zheng D; Shyu AB
    Mol Cell Biol; 2007 Nov; 27(22):7791-801. PubMed ID: 17785442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PUF3 acceleration of deadenylation in vivo can operate independently of CCR4 activity, possibly involving effects on the PAB1-mRNP structure.
    Lee D; Ohn T; Chiang YC; Quigley G; Yao G; Liu Y; Denis CL
    J Mol Biol; 2010 Jun; 399(4):562-75. PubMed ID: 20435044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA decay machines: deadenylation by the Ccr4-not and Pan2-Pan3 complexes.
    Wahle E; Winkler GS
    Biochim Biophys Acta; 2013; 1829(6-7):561-70. PubMed ID: 23337855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. mRNA Deadenylation Is Coupled to Translation Rates by the Differential Activities of Ccr4-Not Nucleases.
    Webster MW; Chen YH; Stowell JAW; Alhusaini N; Sweet T; Graveley BR; Coller J; Passmore LA
    Mol Cell; 2018 Jun; 70(6):1089-1100.e8. PubMed ID: 29932902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PABP Cooperates with the CCR4-NOT Complex to Promote mRNA Deadenylation and Block Precocious Decay.
    Yi H; Park J; Ha M; Lim J; Chang H; Kim VN
    Mol Cell; 2018 Jun; 70(6):1081-1088.e5. PubMed ID: 29932901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Translation termination factor eRF3 mediates mRNA decay through the regulation of deadenylation.
    Hosoda N; Kobayashi T; Uchida N; Funakoshi Y; Kikuchi Y; Hoshino S; Katada T
    J Biol Chem; 2003 Oct; 278(40):38287-91. PubMed ID: 12923185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Basis for poly(A) RNP Architecture and Recognition by the Pan2-Pan3 Deadenylase.
    Schäfer IB; Yamashita M; Schuller JM; Schüssler S; Reichelt P; Strauss M; Conti E
    Cell; 2019 May; 177(6):1619-1631.e21. PubMed ID: 31104843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tpa1p is part of an mRNP complex that influences translation termination, mRNA deadenylation, and mRNA turnover in Saccharomyces cerevisiae.
    Keeling KM; Salas-Marco J; Osherovich LZ; Bedwell DM
    Mol Cell Biol; 2006 Jul; 26(14):5237-48. PubMed ID: 16809762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deadenylation is prerequisite for P-body formation and mRNA decay in mammalian cells.
    Zheng D; Ezzeddine N; Chen CY; Zhu W; He X; Shyu AB
    J Cell Biol; 2008 Jul; 182(1):89-101. PubMed ID: 18625844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction between the poly(A)-binding protein Pab1 and the eukaryotic release factor eRF3 regulates translation termination but not mRNA decay in Saccharomyces cerevisiae.
    Roque S; Cerciat M; Gaugué I; Mora L; Floch AG; de Zamaroczy M; Heurgué-Hamard V; Kervestin S
    RNA; 2015 Jan; 21(1):124-34. PubMed ID: 25411355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antagonistic actions of two human Pan3 isoforms on global mRNA turnover.
    Chen CA; Zhang Y; Xiang Y; Han L; Chang JT; Shyu AB
    RNA; 2017 Sep; 23(9):1404-1418. PubMed ID: 28559491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis for Pan3 binding to Pan2 and its function in mRNA recruitment and deadenylation.
    Wolf J; Valkov E; Allen MD; Meineke B; Gordiyenko Y; McLaughlin SH; Olsen TM; Robinson CV; Bycroft M; Stewart M; Passmore LA
    EMBO J; 2014 Jul; 33(14):1514-26. PubMed ID: 24872509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-Wide Mapping of Decay Factor-mRNA Interactions in Yeast Identifies Nutrient-Responsive Transcripts as Targets of the Deadenylase Ccr4.
    Miller JE; Zhang L; Jiang H; Li Y; Pugh BF; Reese JC
    G3 (Bethesda); 2018 Jan; 8(1):315-330. PubMed ID: 29158339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CAF1 plays an important role in mRNA deadenylation separate from its contact to CCR4.
    Ohn T; Chiang YC; Lee DJ; Yao G; Zhang C; Denis CL
    Nucleic Acids Res; 2007; 35(9):3002-15. PubMed ID: 17439972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pan2-Pan3 complex, together with Ccr4-Not complex, has a role in the cell growth on non-fermentable carbon sources.
    Fujii S; Duy DL; Valderrama AL; Takeuchi R; Matsuura E; Ito A; Irie K; Suda Y; Mizuno T; Irie K
    Biochem Biophys Res Commun; 2021 Sep; 570():125-130. PubMed ID: 34280615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.