These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 18057000)
1. Molecular evolution of Keap1. Two Keap1 molecules with distinctive intervening region structures are conserved among fish. Li L; Kobayashi M; Kaneko H; Nakajima-Takagi Y; Nakayama Y; Yamamoto M J Biol Chem; 2008 Feb; 283(6):3248-3255. PubMed ID: 18057000 [TBL] [Abstract][Full Text] [Related]
2. Generation and characterization of keap1a- and keap1b-knockout zebrafish. Nguyen VT; Bian L; Tamaoki J; Otsubo S; Muratani M; Kawahara A; Kobayashi M Redox Biol; 2020 Sep; 36():101667. PubMed ID: 32828016 [TBL] [Abstract][Full Text] [Related]
3. Genetic hyperactivation of Nrf2 causes larval lethality in Keap1a and Keap1b-double-knockout zebrafish. Bian L; Nguyen VT; Tamaoki J; Endo Y; Dong G; Sato A; Kobayashi M Redox Biol; 2023 Jun; 62():102673. PubMed ID: 36934645 [TBL] [Abstract][Full Text] [Related]
4. Identification of compounds that inhibit the binding of Keap1a/Keap1b Kelch DGR domain with Nrf2 ETGE/DLG motifs in zebrafish. Raghunath A; Nagarajan R; Sundarraj K; Palanisamy K; Perumal E Basic Clin Pharmacol Toxicol; 2019 Sep; 125(3):259-270. PubMed ID: 30861618 [TBL] [Abstract][Full Text] [Related]
5. Identification of the interactive interface and phylogenic conservation of the Nrf2-Keap1 system. Kobayashi M; Itoh K; Suzuki T; Osanai H; Nishikawa K; Katoh Y; Takagi Y; Yamamoto M Genes Cells; 2002 Aug; 7(8):807-20. PubMed ID: 12167159 [TBL] [Abstract][Full Text] [Related]
6. Physiological significance of reactive cysteine residues of Keap1 in determining Nrf2 activity. Yamamoto T; Suzuki T; Kobayashi A; Wakabayashi J; Maher J; Motohashi H; Yamamoto M Mol Cell Biol; 2008 Apr; 28(8):2758-70. PubMed ID: 18268004 [TBL] [Abstract][Full Text] [Related]
7. NRF2 cysteine residues are critical for oxidant/electrophile-sensing, Kelch-like ECH-associated protein-1-dependent ubiquitination-proteasomal degradation, and transcription activation. He X; Ma Q Mol Pharmacol; 2009 Dec; 76(6):1265-78. PubMed ID: 19786557 [TBL] [Abstract][Full Text] [Related]
8. The Keap1-Nrf2 system as an in vivo sensor for electrophiles. Uruno A; Motohashi H Nitric Oxide; 2011 Aug; 25(2):153-60. PubMed ID: 21385624 [TBL] [Abstract][Full Text] [Related]
9. Molecular evolution of Keap1 was essential for adaptation of vertebrates to terrestrial life. Yumimoto K; Sugiyama S; Motomura S; Takahashi D; Nakayama KI Sci Adv; 2023 May; 9(20):eadg2379. PubMed ID: 37205751 [TBL] [Abstract][Full Text] [Related]
10. Critical cysteine residues of Kelch-like ECH-associated protein 1 in arsenic sensing and suppression of nuclear factor erythroid 2-related factor 2. He X; Ma Q J Pharmacol Exp Ther; 2010 Jan; 332(1):66-75. PubMed ID: 19808700 [TBL] [Abstract][Full Text] [Related]
12. The molecular mechanism of Nrf2-Keap1 signaling pathway in the antioxidant defense response induced by BaP in the scallop Chlamys farreri. Wang H; Pan L; Xu R; Si L; Zhang X Fish Shellfish Immunol; 2019 Sep; 92():489-499. PubMed ID: 31220575 [TBL] [Abstract][Full Text] [Related]
13. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Dinkova-Kostova AT; Holtzclaw WD; Cole RN; Itoh K; Wakabayashi N; Katoh Y; Yamamoto M; Talalay P Proc Natl Acad Sci U S A; 2002 Sep; 99(18):11908-13. PubMed ID: 12193649 [TBL] [Abstract][Full Text] [Related]
14. Cul3-mediated Nrf2 ubiquitination and antioxidant response element (ARE) activation are dependent on the partial molar volume at position 151 of Keap1. Eggler AL; Small E; Hannink M; Mesecar AD Biochem J; 2009 Jul; 422(1):171-80. PubMed ID: 19489739 [TBL] [Abstract][Full Text] [Related]
15. Identification of Nrf2/Keap1 pathway and its transcriptional regulation of antioxidant genes after exposure to microcystins in freshwater mussel Cristaria plicata. Wu J; Liu W; Hou S; Wang Y; Fang H; Luo S; Yang L; Wen C Dev Comp Immunol; 2023 Apr; 141():104629. PubMed ID: 36587710 [TBL] [Abstract][Full Text] [Related]
16. Zinc-binding triggers a conformational-switch in the cullin-3 substrate adaptor protein KEAP1 that controls transcription factor NRF2. McMahon M; Swift SR; Hayes JD Toxicol Appl Pharmacol; 2018 Dec; 360():45-57. PubMed ID: 30261176 [TBL] [Abstract][Full Text] [Related]
17. Cysteine-based regulation of the CUL3 adaptor protein Keap1. Sekhar KR; Rachakonda G; Freeman ML Toxicol Appl Pharmacol; 2010 Apr; 244(1):21-6. PubMed ID: 19560482 [TBL] [Abstract][Full Text] [Related]
18. Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Zhang DD; Hannink M Mol Cell Biol; 2003 Nov; 23(22):8137-51. PubMed ID: 14585973 [TBL] [Abstract][Full Text] [Related]
19. Dimerization of substrate adaptors can facilitate cullin-mediated ubiquitylation of proteins by a "tethering" mechanism: a two-site interaction model for the Nrf2-Keap1 complex. McMahon M; Thomas N; Itoh K; Yamamoto M; Hayes JD J Biol Chem; 2006 Aug; 281(34):24756-68. PubMed ID: 16790436 [TBL] [Abstract][Full Text] [Related]
20. Negative regulation of the Nrf1 transcription factor by its N-terminal domain is independent of Keap1: Nrf1, but not Nrf2, is targeted to the endoplasmic reticulum. Zhang Y; Crouch DH; Yamamoto M; Hayes JD Biochem J; 2006 Nov; 399(3):373-85. PubMed ID: 16872277 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]