These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 18057038)
1. Effect of cold acclimation on the photosynthetic performance of two ecotypes of Colobanthus quitensis (Kunth) Bartl. Bravo LA; Saavedra-Mella FA; Vera F; Guerra A; Cavieres LA; Ivanov AG; Huner NP; Corcuera LJ J Exp Bot; 2007; 58(13):3581-90. PubMed ID: 18057038 [TBL] [Abstract][Full Text] [Related]
2. Cold-acclimation limits low temperature induced photoinhibition by promoting a higher photochemical quantum yield and a more effective PSII restoration in darkness in the Antarctic rather than the Andean ecotype of Colobanthus quitensis Kunt Bartl (Cariophyllaceae). Bascuñán-Godoy L; Sanhueza C; Cuba M; Zuñiga GE; Corcuera LJ; Bravo LA BMC Plant Biol; 2012 Jul; 12():114. PubMed ID: 22827966 [TBL] [Abstract][Full Text] [Related]
3. Characterization of antifreeze activity in Antarctic plants. Bravo LA; Griffith M J Exp Bot; 2005 Apr; 56(414):1189-96. PubMed ID: 15723822 [TBL] [Abstract][Full Text] [Related]
4. Are Deschampsia antarctica Desv. and Colobanthus quitensis (Kunth) Bartl. migratory relicts? Parnikoza IY; Maidanuk DN; Kozeretska IA Tsitol Genet; 2007; 41(4):36-40. PubMed ID: 18030724 [TBL] [Abstract][Full Text] [Related]
5. Contrasting thermal acclimation of leaf dark respiration and photosynthesis of Antarctic vascular plant species exposed to nocturnal warming. Sanhueza C; Fuentes F; Cortés D; Bascunan-Godoy L; Sáez PL; Bravo LA; Cavieres LA Physiol Plant; 2019 Oct; 167(2):205-216. PubMed ID: 30467866 [TBL] [Abstract][Full Text] [Related]
6. Acclimation of tobacco leaves to high light intensity drives the plastoquinone oxidation system--relationship among the fraction of open PSII centers, non-photochemical quenching of Chl fluorescence and the maximum quantum yield of PSII in the dark. Miyake C; Amako K; Shiraishi N; Sugimoto T Plant Cell Physiol; 2009 Apr; 50(4):730-43. PubMed ID: 19251745 [TBL] [Abstract][Full Text] [Related]
7. Regulation of energy partitioning and alternative electron transport pathways during cold acclimation of lodgepole pine is oxygen dependent. Savitch LV; Ivanov AG; Krol M; Sprott DP; Oquist G; Huner NP Plant Cell Physiol; 2010 Sep; 51(9):1555-70. PubMed ID: 20630988 [TBL] [Abstract][Full Text] [Related]
8. Excitation energy partitioning and quenching during cold acclimation in Scots pine. Sveshnikov D; Ensminger I; Ivanov AG; Campbell D; Lloyd J; Funk C; Hüner NP; Oquist G Tree Physiol; 2006 Mar; 26(3):325-36. PubMed ID: 16356904 [TBL] [Abstract][Full Text] [Related]
9. Photosynthetic and respiratory acclimation and growth response of Antarctic vascular plants to contrasting temperature regimes. Xiong FS; Mueller EC; Day TA Am J Bot; 2000 May; 87(5):700-10. PubMed ID: 10811794 [TBL] [Abstract][Full Text] [Related]
10. Comparative transcriptome analysis of field- and chamber-grown samples of Colobanthus quitensis (Kunth) Bartl, an Antarctic flowering plant. Cho SM; Lee H; Jo H; Lee H; Kang Y; Park H; Lee J Sci Rep; 2018 Jul; 8(1):11049. PubMed ID: 30038328 [TBL] [Abstract][Full Text] [Related]
11. Photosynthetic response of the Mediterranean zooxanthellate coral Cladocora caespitosa to the natural range of light and temperature. Rodolfo-Metalpa R; Huot Y; Ferrier-Pagès C J Exp Biol; 2008 May; 211(Pt 10):1579-86. PubMed ID: 18456885 [TBL] [Abstract][Full Text] [Related]
12. High-light stress and photoprotection in Umbilicaria antarctica monitored by chlorophyll fluorescence imaging and changes in zeaxanthin and glutathione. Barták M; Hájek J; Vráblíková H; Dubová J Plant Biol (Stuttg); 2004 May; 6(3):333-41. PubMed ID: 15143442 [TBL] [Abstract][Full Text] [Related]
13. Acclimation to short-term low temperatures in two Eucalyptus globulus clones with contrasting drought resistance. Costa E Silva F; Shvaleva A; Broetto F; Ortuño MF; Rodrigues ML; Almeida MH; Chaves MM; Pereira JS Tree Physiol; 2009 Jan; 29(1):77-86. PubMed ID: 19203934 [TBL] [Abstract][Full Text] [Related]
14. Differential response of photosynthesis in greenhouse- and field-ecotypes of tomato to long-term chilling under low light. Hu WH; Zhou YH; Du YS; Xia XJ; Yu JQ J Plant Physiol; 2006 Dec; 163(12):1238-46. PubMed ID: 16300855 [TBL] [Abstract][Full Text] [Related]
15. Seasonal changes in glycerol content and cold hardiness in two ecotypes of the rice stem borer, Chilo suppressalis, exposed to the environment in the Shonai district, Japan. Ishiguro S; Li Y; Nakano K; Tsumuki H; Goto M J Insect Physiol; 2007 Apr; 53(4):392-7. PubMed ID: 17336324 [TBL] [Abstract][Full Text] [Related]
16. Assessing the relationship between respiratory acclimation to the cold and photosystem II redox poise in Arabidopsis thaliana. Armstrong AF; Wardlaw KD; Atkin OK Plant Cell Environ; 2007 Dec; 30(12):1513-22. PubMed ID: 17953650 [TBL] [Abstract][Full Text] [Related]
17. Rapid cold-hardening increases the freezing tolerance of the Antarctic midge Belgica antarctica. Lee RE; Elnitsky MA; Rinehart JP; Hayward SA; Sandro LH; Denlinger DL J Exp Biol; 2006 Feb; 209(Pt 3):399-406. PubMed ID: 16424090 [TBL] [Abstract][Full Text] [Related]
18. Endophytic fungi community associated with the dicotyledonous plant Colobanthus quitensis (Kunth) Bartl. (Caryophyllaceae) in Antarctica. Rosa LH; Almeida Vieira Mde L; Santiago IF; Rosa CA FEMS Microbiol Ecol; 2010 Jul; 73(1):178-89. PubMed ID: 20455944 [TBL] [Abstract][Full Text] [Related]
19. Calcium Oxalate Crystals in Leaves of the Extremophile Plant Gómez-Espinoza O; González-Ramírez D; Méndez-Gómez J; Guillén-Watson R; Medaglia-Mata A; Bravo LA Plants (Basel); 2021 Aug; 10(9):. PubMed ID: 34579321 [TBL] [Abstract][Full Text] [Related]
20. Antarctic fish can compensate for rising temperatures: thermal acclimation of cardiac performance in Pagothenia borchgrevinki. Franklin CE; Davison W; Seebacher F J Exp Biol; 2007 Sep; 210(Pt 17):3068-74. PubMed ID: 17704081 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]