BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 18057214)

  • 21. Spatial strategy elaboration in egocentric and allocentric tasks following medial prefrontal cortex lesions in the rat.
    Ethier K; Le Marec N; Rompré PP; Godbout R
    Brain Cogn; 2001; 46(1-2):134-5. PubMed ID: 11527312
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatial delayed alternation of rats in a T-maze: effects of neurotoxic lesions of the medial prefrontal cortex and of T-maze rotations.
    Sánchez-Santed F; de Bruin JP; Heinsbroek RP; Verwer RW
    Behav Brain Res; 1997 Mar; 84(1-2):73-9. PubMed ID: 9079774
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Medial Prefrontal Cortex Neural Plasticity, Orexin Receptor 1 Signaling, and Connectivity with the Lateral Hypothalamus Are Necessary in Cue-Potentiated Feeding.
    Cole S; Keefer SE; Anderson LC; Petrovich GD
    J Neurosci; 2020 Feb; 40(8):1744-1755. PubMed ID: 31953368
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The prefrontal cortex is required for incidental encoding but not recollection of source information in rodents.
    Parnell R; Grasby K; Talk A
    Behav Brain Res; 2012 Jun; 232(1):77-83. PubMed ID: 22504146
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Disconnection of the hippocampal-prefrontal cortical circuits impairs spatial working memory performance in rats.
    Wang GW; Cai JX
    Behav Brain Res; 2006 Dec; 175(2):329-36. PubMed ID: 17045348
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differential role of the dorsal hippocampus, ventro-intermediate hippocampus, and medial prefrontal cortex in updating the value of a spatial goal.
    De Saint Blanquat P; Hok V; Save E; Poucet B; Chaillan FA
    Hippocampus; 2013 May; 23(5):342-51. PubMed ID: 23460312
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dentate gyrus-selective colchicine lesion and disruption of performance in spatial tasks: difficulties in "place strategy" because of a lack of flexibility in the use of environmental cues?
    Xavier GF; Oliveira-Filho FJ; Santos AM
    Hippocampus; 1999; 9(6):668-81. PubMed ID: 10641760
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neonatal ventral hippocampus lesions disrupt extra-dimensional shift and alter dendritic spine density in the medial prefrontal cortex of juvenile rats.
    Marquis JP; Goulet S; Doré FY
    Neurobiol Learn Mem; 2008 Sep; 90(2):339-46. PubMed ID: 18490183
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distinct roles of hippocampus and medial prefrontal cortex in spatial and nonspatial memory.
    Sapiurka M; Squire LR; Clark RE
    Hippocampus; 2016 Dec; 26(12):1515-1524. PubMed ID: 27576311
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Implications of CA3 NMDA and opiate receptors for spatial pattern completion in rats.
    Kesner RP; Warthen DK
    Hippocampus; 2010 Apr; 20(4):550-7. PubMed ID: 19650123
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proximal versus distal cue utilization in spatial navigation: the role of visual acuity?
    Carman HM; Mactutus CF
    Neurobiol Learn Mem; 2002 Sep; 78(2):332-46. PubMed ID: 12431421
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engagement of the PFC in consolidation and recall of recent spatial memory.
    Leon WC; Bruno MA; Allard S; Nader K; Cuello AC
    Learn Mem; 2010 Jun; 17(6):297-305. PubMed ID: 20508034
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inactivation of the medial prefrontal cortex of the rat impairs strategy set-shifting, but not reversal learning, using a novel, automated procedure.
    Floresco SB; Block AE; Tse MT
    Behav Brain Res; 2008 Jun; 190(1):85-96. PubMed ID: 18359099
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Double dissociation between hippocampal and prefrontal lesions on an operant delayed matching task and a water maze reference memory task.
    Sloan HL; Good M; Dunnett SB
    Behav Brain Res; 2006 Jul; 171(1):116-26. PubMed ID: 16677723
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impaired delayed spatial win-shift behaviour on the eight arm radial maze following excitotoxic lesions of the medial prefrontal cortex in the rat.
    Taylor CL; Latimer MP; Winn P
    Behav Brain Res; 2003 Dec; 147(1-2):107-14. PubMed ID: 14659576
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spatial and nonspatial Morris maze learning: impaired behavioral flexibility in mice with ectopias located in the prefrontal cortex.
    Hyde LA; Stavnezer AJ; Bimonte HA; Sherman GF; Denenberg VH
    Behav Brain Res; 2002 Jul; 133(2):247-59. PubMed ID: 12110458
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional role of rat prelimbic-infralimbic cortices in spatial memory: evidence for their involvement in attention and behavioural flexibility.
    Delatour B; Gisquet-Verrier P
    Behav Brain Res; 2000 Apr; 109(1):113-28. PubMed ID: 10699663
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 6-Hydroxydopamine-Induced Dopamine Reductions in the Nucleus Accumbens, but not the Medial Prefrontal Cortex, Impair Cincinnati Water Maze Egocentric and Morris Water Maze Allocentric Navigation in Male Sprague-Dawley Rats.
    Braun AA; Amos-Kroohs RM; Gutierrez A; Lundgren KH; Seroogy KB; Vorhees CV; Williams MT
    Neurotox Res; 2016 Aug; 30(2):199-212. PubMed ID: 27003940
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of the medial prefrontal cortex in the acquisition, retention, and reversal of a tactile visuospatial conditional discrimination task.
    Shaw CL; Watson GDR; Hallock HL; Cline KM; Griffin AL
    Behav Brain Res; 2013 Jan; 236(1):94-101. PubMed ID: 22940456
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Early amygdala damage disrupts performance on medial prefrontal cortex-related tasks but spares spatial learning and memory in the rat.
    Diergaarde L; Gerrits MA; Brouwers JP; van Ree JM
    Neuroscience; 2005; 130(3):581-90. PubMed ID: 15590142
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.