BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 18057881)

  • 1. The additive effects of the active component of grapefruit juice (naringenin) and antiarrhythmic drugs on HERG inhibition.
    Lin C; Ke X; Ranade V; Somberg J
    Cardiology; 2008; 110(3):145-52. PubMed ID: 18057881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. QTc prolongation by grapefruit juice and its potential pharmacological basis: HERG channel blockade by flavonoids.
    Zitron E; Scholz E; Owen RW; Lück S; Kiesecker C; Thomas D; Kathöfer S; Niroomand F; Kiehn J; Kreye VA; Katus HA; Schoels W; Karle CA
    Circulation; 2005 Feb; 111(7):835-8. PubMed ID: 15710766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of cardiac HERG channels by grapefruit flavonoid naringenin: implications for the influence of dietary compounds on cardiac repolarisation.
    Scholz EP; Zitron E; Kiesecker C; Lück S; Thomas D; Kathöfer S; Kreye VA; Katus HA; Kiehn J; Schoels W; Karle CA
    Naunyn Schmiedebergs Arch Pharmacol; 2005 Jun; 371(6):516-25. PubMed ID: 16007460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acidification alters antiarrhythmic drug blockade of the ether-a-go-go-related Gene (HERG) Channels.
    Dong DL; Li Z; Wang HZ; Du ZM; Song WH; Yang BF
    Basic Clin Pharmacol Toxicol; 2004 May; 94(5):209-12. PubMed ID: 15125690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracellular acidification and hyperkalemia induce changes in HERG inhibition by ibutilide.
    Lin C; Ke X; Ranade V; Somberg J
    Cardiology; 2008; 110(3):209-16. PubMed ID: 18057887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blockade of HERG channels by the class III antiarrhythmic azimilide: mode of action.
    Busch AE; Eigenberger B; Jurkiewicz NK; Salata JJ; Pica A; Suessbrich H; Lang F
    Br J Pharmacol; 1998 Jan; 123(1):23-30. PubMed ID: 9484850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pharmacological inhibition of the hERG potassium channel is modulated by extracellular but not intracellular acidosis.
    DU CY; El Harchi A; Zhang YH; Orchard CH; Hancox JC
    J Cardiovasc Electrophysiol; 2011 Oct; 22(10):1163-70. PubMed ID: 21489024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibitory effects of the class III antiarrhythmic drug amiodarone on cloned HERG potassium channels.
    Kiehn J; Thomas D; Karle CA; Schöls W; Kübler W
    Naunyn Schmiedebergs Arch Pharmacol; 1999 Mar; 359(3):212-9. PubMed ID: 10208308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-affinity blockade of human ether-a-go-go-related gene human cardiac potassium channels by the novel antiarrhythmic drug BRL-32872.
    Thomas D; Wendt-Nordahl G; Röckl K; Ficker E; Brown AM; Kiehn J
    J Pharmacol Exp Ther; 2001 May; 297(2):753-61. PubMed ID: 11303067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of extracellular acidosis on the effect of IKr blockers.
    Lin C; Ke X; Cvetanovic I; Ranade V; Somberg J
    J Cardiovasc Pharmacol Ther; 2005 Mar; 10(1):67-76. PubMed ID: 15821840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of high extracellular potassium on IKr inhibition by anti-arrhythmic agents.
    Lin C; Ke X; Cvetanovic I; Ranade V; Somberg J
    Cardiology; 2007; 108(1):18-27. PubMed ID: 16960444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mechanism for the potential proarrhythmic effect of acidosis, bradycardia, and hypokalemia on the blockade of human ether-a-go-go-related gene (HERG) channels.
    Lin C; Cvetanovic I; Ke X; Ranade V; Somberg J
    Am J Ther; 2005; 12(4):328-36. PubMed ID: 16041196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative pharmacology of guinea pig cardiac myocyte and cloned hERG (I(Kr)) channel.
    Davie C; Pierre-Valentin J; Pollard C; Standen N; Mitcheson J; Alexander P; Thong B
    J Cardiovasc Electrophysiol; 2004 Nov; 15(11):1302-9. PubMed ID: 15574182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation gating determines drug potency: a common mechanism for drug blockade of HERG channels.
    Yang BF; Xu DH; Xu CQ; Li Z; Du ZM; Wang HZ; Dong DL
    Acta Pharmacol Sin; 2004 May; 25(5):554-60. PubMed ID: 15132818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibitory effect of the class III antiarrhythmic drug nifekalant on HERG channels: mode of action.
    Kushida S; Ogura T; Komuro I; Nakaya H
    Eur J Pharmacol; 2002 Dec; 457(1):19-27. PubMed ID: 12460639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antiarrhythmic drug carvedilol inhibits HERG potassium channels.
    Karle CA; Kreye VA; Thomas D; Röckl K; Kathöfer S; Zhang W; Kiehn J
    Cardiovasc Res; 2001 Feb; 49(2):361-70. PubMed ID: 11164846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A pharmacokinetic-pharmacodynamic model for the quantitative prediction of dofetilide clinical QT prolongation from human ether-a-go-go-related gene current inhibition data.
    Jonker DM; Kenna LA; Leishman D; Wallis R; Milligan PA; Jonsson EN
    Clin Pharmacol Ther; 2005 Jun; 77(6):572-82. PubMed ID: 15961988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of the current of heterologously expressed HERG potassium channels by flecainide and comparison with quinidine, propafenone and lignocaine.
    Paul AA; Witchel HJ; Hancox JC
    Br J Pharmacol; 2002 Jul; 136(5):717-29. PubMed ID: 12086981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of HERG potassium channel function by drug action.
    Thomas D; Karle CA; Kiehn J
    Ann Med; 2004; 36 Suppl 1():41-6. PubMed ID: 15176423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [HERG K+ channel, the target of anti-arrhythmias drugs].
    Guan FY; Yang SJ
    Yao Xue Xue Bao; 2007 Jul; 42(7):687-91. PubMed ID: 17882949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.