BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 18057938)

  • 1. Genetic transformation via somatic embryogenesis to establish herbicide-resistant opium poppy.
    Facchini PJ; Loukanina N; Blanche V
    Plant Cell Rep; 2008 Apr; 27(4):719-27. PubMed ID: 18057938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Agrobacterium rhizogenes-mediated transformation of opium poppy, Papaver somniferum l., and California poppy, Eschscholzia californica cham., root cultures.
    Park SU; Facchini PJ
    J Exp Bot; 2000 Jun; 51(347):1005-16. PubMed ID: 10948228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Opium Poppy (Papaver somniferum).
    Chitty JA; Allen RS; Larkin PJ
    Methods Mol Biol; 2006; 344():383-91. PubMed ID: 17033080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of herbicide-resistant transgenic Panax ginseng through the introduction of the phosphinothricin acetyl transferase gene and successful soil transfer.
    Choi YE; Jeong JH; In JK; Yang DC
    Plant Cell Rep; 2003 Feb; 21(6):563-8. PubMed ID: 12789431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic transformation in commercial Tasmanian cultivars of opium poppy, Papaver somniferum, and movement of transgenicpollen in the field.
    Chitty JA; Allen RS; Fist AJ; Larkin PJ
    Funct Plant Biol; 2003 Nov; 30(10):1045-1058. PubMed ID: 32689087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Agrobacterium-mediated genetic transformation and development of herbicide-resistant sugarcane (Saccharum species hybrids) using axillary buds.
    Manickavasagam M; Ganapathi A; Anbazhagan VR; Sudhakar B; Selvaraj N; Vasudevan A; Kasthurirengan S
    Plant Cell Rep; 2004 Sep; 23(3):134-43. PubMed ID: 15133712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transformation of opium poppy (Papaver somniferum L.) with antisense berberine bridge enzyme gene (anti-bbe) via somatic embryogenesis results in an altered ratio of alkaloids in latex but not in roots.
    Frick S; Chitty JA; Kramell R; Schmidt J; Allen RS; Larkin PJ; Kutchan TM
    Transgenic Res; 2004 Dec; 13(6):607-13. PubMed ID: 15672841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Agrobacterium tumefaciens-mediated transformation of Indian mulberry, Morus indica cv. K2: a time-phased screening strategy.
    Bhatnagar S; Khurana P
    Plant Cell Rep; 2003 Mar; 21(7):669-75. PubMed ID: 12789417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity of a chimeric promoter with the doubled CaMV 35S enhancer element in protoplast-derived cells and transgenic plants in maize.
    Omirulleh S; Abrahám M; Golovkin M; Stefanov I; Karabaev MK; Mustárdy L; Mórocz S; Dudits D
    Plant Mol Biol; 1993 Feb; 21(3):415-28. PubMed ID: 8443339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient transformation and regeneration of fig (Ficus carica L.) via somatic embryogenesis.
    Soliman HI; Gabr M; Abdallah NA
    GM Crops; 2010; 1(1):40-51. PubMed ID: 21912211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Agrobacterium-mediated genetic transformation of California poppy, Eschscholzia californica Cham., via somatic embryogenesis.
    Park SU; Facchini PJ
    Plant Cell Rep; 2000 Oct; 19(10):1006-1012. PubMed ID: 30754831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transgenic Pinus radiata from Agrobacterium tumefaciens-mediated transformation of cotyledons.
    Grant JE; Cooper PA; Dale TM
    Plant Cell Rep; 2004 Jul; 22(12):894-902. PubMed ID: 14986058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression patterns conferred by tyrosine/dihydroxyphenylalanine decarboxylase promoters from opium poppy are conserved in transgenic tobacco.
    Facchini PJ; Penzes-Yost C; Samanani N; Kowalchuk B
    Plant Physiol; 1998 Sep; 118(1):69-81. PubMed ID: 9733527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of Agrobacterium-mediated transformation technology for mature seed-derived callus tissues of indica rice cultivar IR64.
    Sahoo RK; Tuteja N
    GM Crops Food; 2012; 3(2):123-8. PubMed ID: 22538224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of herbicide-tolerant zoysiagrass by Agrobacterium-mediated transformation.
    Toyama K; Bae CH; Kang JG; Lim YP; Adachi T; Riu KZ; Song PS; Lee HY
    Mol Cells; 2003 Aug; 16(1):19-27. PubMed ID: 14503840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic transformation of mature embryos of bread (T. aestivum) and pasta (T. durum) wheat genotypes.
    Moghaieb RE; El-Arabi NI; Momtaz OA; Youssef SS; Soliman MH
    GM Crops; 2010; 1(2):87-93. PubMed ID: 21865876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Agrobacterium tumefaciens-mediated transformation of eggplant (Solanum melongena L.) using root explants.
    Franklin G; Lakshmi Sita G
    Plant Cell Rep; 2003 Feb; 21(6):549-54. PubMed ID: 12789429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of promoters from tyrosine/dihydroxyphenylalanine decarboxylase and berberine bridge enzyme genes involved in benzylisoquinoline alkaloid biosynthesis in opium poppy.
    Park SU; Johnson AG; Penzes-Yost C; Facchini PJ
    Plant Mol Biol; 1999 May; 40(1):121-31. PubMed ID: 10394951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Transgenic maize plants with low copy number of foreign genes were produced with maize Ubi-1 promoter].
    Xu ZQ; Gong LG; Huang X; Zhang YY; Gao LM
    Sheng Wu Gong Cheng Xue Bao; 2004 Jan; 20(1):120-5. PubMed ID: 16108502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High frequency regeneration via direct somatic embryogenesis and efficient Agrobacterium-mediated genetic transformation of tobacco.
    Pathi KM; Tula S; Tuteja N
    Plant Signal Behav; 2013 Jun; 8(6):e24354. PubMed ID: 23518589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.