These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 18057974)

  • 1. Functional MRI at 3T using intermolecular double-quantum coherence (iDQC) with spin-echo (SE) acquisitions.
    Gu T; Kennedy SD; Chen Z; Schneider KA; Zhong J
    MAGMA; 2007 Dec; 20(5-6):255-64. PubMed ID: 18057974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BOLD imaging in the mouse brain using a turboCRAZED sequence at high magnetic fields.
    Schneider JT; Faber C
    Magn Reson Med; 2008 Oct; 60(4):850-9. PubMed ID: 18816869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of blood oxygenation level-dependent sensitivity in magnetic resonance imaging using intermolecular double-quantum coherence.
    Zhong J; Chen Z; Kwok WE; Kennedy S; You Z
    J Magn Reson Imaging; 2002 Dec; 16(6):733-40. PubMed ID: 12451587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. fMRI of auditory stimulation with intermolecular double-quantum coherences (iDQCs) at 1.5T.
    Zhong J; Kwok E; Chen Z
    Magn Reson Med; 2001 Mar; 45(3):356-64. PubMed ID: 11241690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional magnetic resonance imaging with intermolecular double-quantum coherences at 3 T.
    Schäfer A; Jochimsen TH; Möller HE
    Magn Reson Med; 2005 Jun; 53(6):1402-8. PubMed ID: 15906284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypercapnia-induced effects on image contrast based on intermolecular double-quantum coherences.
    Schäfer A; Zysset S; Heinke W; Möller HE
    Magn Reson Med; 2008 Dec; 60(6):1306-12. PubMed ID: 19030164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intermolecular double-quantum coherence MR microimaging of pig tail with unique image contrast.
    Hou T; Chen Z; Hwang DW; Zhong JH; Hwang LP
    Magn Reson Imaging; 2004 May; 22(4):543-50. PubMed ID: 15120174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orientational dependence of intermolecular double quantum coherence (iDQC) signal from tendon tissue.
    Ozus B; Clarke GD; Dodd SJ; Fullerton GD
    Magn Reson Med; 2005 May; 53(5):1183-6. PubMed ID: 15844091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced sensitivity to molecular diffusion with intermolecular double-quantum coherences: implications and potential applications.
    Zhong J; Chen Z; Kwok E; Kennedy S
    Magn Reson Imaging; 2001 Jan; 19(1):33-9. PubMed ID: 11295344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of brown adipose tissue with intermolecular double-quantum coherence magnetic resonance spectroscopy at 3.0 T.
    Lin L; Zhang Q; Wang N; Jiang K; Lin Y; Chen Z; Song Q; Liu A; Wang J
    NMR Biomed; 2022 Jun; 35(6):e4676. PubMed ID: 35043481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical exchange saturation transfer MRI using intermolecular double-quantum coherences with multiple refocusing pulses.
    Lu J; Cai C; Cai S; Chen Z; Zhou J
    Magn Reson Imaging; 2014 Jul; 32(6):759-65. PubMed ID: 24685983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the sensitivity of spin-echo fMRI at 3T by highly accelerated acquisitions.
    Barghoorn A; Riemenschneider B; Hennig J; LeVan P
    Magn Reson Med; 2021 Jul; 86(1):245-257. PubMed ID: 33624352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intermolecular double-quantum coherence imaging without coherence selection gradients and its application in in vivo MRI.
    Shen G; Cai C; Chen Z; Cai S
    Magn Reson Imaging; 2013 May; 31(4):515-23. PubMed ID: 23473838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New image contrast mechanisms in intermolecular double-quantum coherence human MR imaging.
    Zhong J; Chen Z; Kwok E
    J Magn Reson Imaging; 2000 Aug; 12(2):311-20. PubMed ID: 10931595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing contrast origins and noise contribution in spin-echo EPI BOLD at 3 T.
    Ragot DM; Chen JJ
    Magn Reson Imaging; 2019 Apr; 57():328-336. PubMed ID: 30439514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. iDQC MRI weighted by longitudinal relaxation in the rotating frame.
    Zheng B; Chen Z; Kennedy SD; Zhong J
    Magn Reson Med; 2006 Aug; 56(2):327-33. PubMed ID: 16826606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of iron-labeled single cells by MR imaging based on intermolecular double quantum coherences at 14 T.
    Cho JH; Hong KS; Cho J; Chang SK; Cheong C; Lee NH; Kim H; Warren WS; Ahn S; Lee C
    J Magn Reson; 2012 Apr; 217():86-91. PubMed ID: 22436467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional contrast based on intermolecular double-quantum coherences: influence of the correlation distance.
    Schäfer A; Möller HE
    Magn Reson Med; 2007 Oct; 58(4):696-704. PubMed ID: 17899607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gradient-echo and spin-echo blood oxygenation level-dependent functional MRI at ultrahigh fields of 9.4 and 15.2 Tesla.
    Han S; Son JP; Cho H; Park JY; Kim SG
    Magn Reson Med; 2019 Feb; 81(2):1237-1246. PubMed ID: 30183108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of BOLD, diffusion-weighted fMRI and ADC-fMRI for stimulation of the primary visual system with a block paradigm.
    Nicolas R; Gros-Dagnac H; Aubry F; Celsis P
    Magn Reson Imaging; 2017 Jun; 39():123-131. PubMed ID: 28163122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.