These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 18058193)
21. Aluminium leaching using chelating agents as compositions of food. Karbouj R Food Chem Toxicol; 2007 Sep; 45(9):1688-93. PubMed ID: 17434655 [TBL] [Abstract][Full Text] [Related]
22. On the mechanisms of 67Ga and 59Fe uptake by tumors. Anghileri LJ; Crone MC; Thouvenot P; Brunotte F; Marchal C; Robert J Nuklearmedizin; 1983 Jun; 22(3):152-4. PubMed ID: 6578494 [TBL] [Abstract][Full Text] [Related]
23. In vitro and in vivo comparative studies on chelation of aluminum by some polyaminocarboxylic acids. Graff L; Muller G; Burnel D Res Commun Mol Pathol Pharmacol; 1995 Jun; 88(3):271-92. PubMed ID: 8564384 [TBL] [Abstract][Full Text] [Related]
24. The comparison of aluminium effects and its uptake by Escherichia coli in different media. Bojić A; Purenović M; Kocić B; Mihailović D; Bojić D Cent Eur J Public Health; 2002 Jun; 10(1-2):66-71. PubMed ID: 12096687 [TBL] [Abstract][Full Text] [Related]
25. Evaluation of 2-methyl-3-hydroxy-4-pyridinecarboxylic acid as a possible chelating agent for iron and aluminium. Dean A; Ferlin MG; Brun P; Castagliuolo I; Badocco D; Pastore P; Venzo A; Bombi GG; Di Marco VB Dalton Trans; 2008 Apr; (13):1689-97. PubMed ID: 18354766 [TBL] [Abstract][Full Text] [Related]
26. Molecular structures of chloro(phthalocyaninato)-aluminum(III) and -gallium(III) as determined by gas electron diffraction and quantum chemical calculations: quantum chemical calculations on fluoro(phthalocyaninato)-aluminum(III) and -gallium(III), chloro(tetrakis(1,2,5-thiadiazole)porphyrazinato)-aluminum(III) and -gallium(III) and comparison with their X-ray structures. Strenalyuk T; Samdal S; Volden HV J Phys Chem A; 2008 Sep; 112(38):9075-82. PubMed ID: 18754601 [TBL] [Abstract][Full Text] [Related]
27. Comparative proteome analysis of differentially expressed proteins induced by Al toxicity in soybean. Zhen Y; Qi JL; Wang SS; Su J; Xu GH; Zhang MS; Miao L; Peng XX; Tian D; Yang YH Physiol Plant; 2007 Dec; 131(4):542-54. PubMed ID: 18251846 [TBL] [Abstract][Full Text] [Related]
28. Delineation of the molecular mechanism for disulfide stress-induced aluminium toxicity. Wu MJ; Murphy PA; O'Doherty PJ; Mieruszynski S; Jones M; Kersaitis C; Rogers PJ; Bailey TD; Higgins VJ Biometals; 2012 Jun; 25(3):553-61. PubMed ID: 22403011 [TBL] [Abstract][Full Text] [Related]
29. Aluminium interaction with 67Ga uptake by human plasma and transferrin. Cochran M; Neoh S; Stephens E Clin Chim Acta; 1983 Aug; 132(2):199-203. PubMed ID: 6616874 [TBL] [Abstract][Full Text] [Related]
30. Promotion of Zn(2+) uptake by Al (3+) in a Saccharomyces Cerevisiae mutant that lacks the ZRT1 gene encoding a high-affinity Zn transporter. Tamura S; Yoshimura E Biol Trace Elem Res; 2008 Sep; 124(3):262-8. PubMed ID: 18463798 [TBL] [Abstract][Full Text] [Related]
31. New tripodal hydroxypyridinone based chelating agents for Fe(III), Al(III) and Ga(III): Synthesis, physico-chemical properties and bioevaluation. Grazina R; Gano L; Sebestík J; Amelia Santos M J Inorg Biochem; 2009 Feb; 103(2):262-73. PubMed ID: 19062099 [TBL] [Abstract][Full Text] [Related]
32. 27Al-NMR studies of aluminum transport across yeast cell membranes. Rao KS; Easwaran KR Mol Cell Biochem; 1997 Oct; 175(1-2):59-63. PubMed ID: 9350034 [TBL] [Abstract][Full Text] [Related]
33. Uptake of 26-Al and 67-Ga into brain and other tissues of normal and hypotransferrinaemic mice. Radunović A; Ueda F; Raja KB; Simpson RJ; Templar J; King SJ; Lilley JS; Day JP; Bradbury MW Biometals; 1997 Jul; 10(3):185-91. PubMed ID: 9243797 [TBL] [Abstract][Full Text] [Related]
34. 1,6-Dimethyl-4-hydroxy-3-pyridinecarboxylic acid and 4-hydroxy-2-methyl-3-pyridinecarboxylic acid as new possible chelating agents for iron and aluminium. Dean A; Ferlin MG; Brun P; Castagliuolo I; Yokel RA; Badocco D; Pastore P; Venzo A; Bombi GG; Di Marco VB Dalton Trans; 2009 Mar; (10):1815-24. PubMed ID: 19240917 [TBL] [Abstract][Full Text] [Related]
35. Effects of humic substances and phenolic compounds on the in vitro toxicity of aluminium. Sauvant MP; Pepin D; Guillot J Ecotoxicol Environ Saf; 1999 Sep; 44(1):47-55. PubMed ID: 10499988 [TBL] [Abstract][Full Text] [Related]
36. [The spectroscopic studies on the binding of Al(III) to EHPG]. Li YQ; Bai HJ; Yang BS Guang Pu Xue Yu Guang Pu Fen Xi; 2002 Jun; 22(3):433-5. PubMed ID: 12938326 [TBL] [Abstract][Full Text] [Related]
37. Mechanisms of uptake of gallium by human neuroblastoma cells and effects of gallium and aluminum on cell growth, lysosomal protease, and choline acetyl transferase activity. Dobson CB; Graham J; Itzhaki RF Exp Neurol; 1998 Oct; 153(2):342-50. PubMed ID: 9784293 [TBL] [Abstract][Full Text] [Related]
38. Overexpression of the Saccharomyces cerevisiae magnesium transport system confers resistance to aluminum ion. MacDiarmid CW; Gardner RC J Biol Chem; 1998 Jan; 273(3):1727-32. PubMed ID: 9430719 [TBL] [Abstract][Full Text] [Related]
39. Not all ALMT1-type transporters mediate aluminum-activated organic acid responses: the case of ZmALMT1 - an anion-selective transporter. Piñeros MA; Cançado GM; Maron LG; Lyi SM; Menossi M; Kochian LV Plant J; 2008 Jan; 53(2):352-67. PubMed ID: 18069943 [TBL] [Abstract][Full Text] [Related]
40. The role of aluminum sensing and signaling in plant aluminum resistance. Liu J; Piñeros MA; Kochian LV J Integr Plant Biol; 2014 Mar; 56(3):221-30. PubMed ID: 24417891 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]