BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 18058196)

  • 21. Biomimetic collagen/apatite coating formation on Ti6Al4V substrates.
    Xia Z; Yu X; Wei M
    J Biomed Mater Res B Appl Biomater; 2012 Apr; 100(3):871-81. PubMed ID: 22102365
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro.
    Lu HH; El-Amin SF; Scott KD; Laurencin CT
    J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Formation of bone-like apatite layer on chitosan fiber mesh scaffolds by a biomimetic spraying process.
    Tuzlakoglu K; Reis RL
    J Mater Sci Mater Med; 2007 Jul; 18(7):1279-86. PubMed ID: 17431748
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A one-step method to fabricate PLLA scaffolds with deposition of bioactive hydroxyapatite and collagen using ice-based microporogens.
    Li J; Chen Y; Mak AF; Tuan RS; Li L; Li Y
    Acta Biomater; 2010 Jun; 6(6):2013-9. PubMed ID: 20004261
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Induction of osteoblast differentiation phenotype on poly(L-lactic acid) nanofibrous matrix.
    Hu J; Liu X; Ma PX
    Biomaterials; 2008 Oct; 29(28):3815-21. PubMed ID: 18617260
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication of fibrous poly(butylene succinate)/wollastonite/apatite composite scaffolds by electrospinning and biomimetic process.
    Zhang D; Chang J; Zeng Y
    J Mater Sci Mater Med; 2008 Jan; 19(1):443-9. PubMed ID: 17607518
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Osteoblast adhesion on poly(L-lactic acid)/polystyrene demixed thin film blends: effect of nanotopography, surface chemistry, and wettability.
    Lim JY; Hansen JC; Siedlecki CA; Hengstebeck RW; Cheng J; Winograd N; Donahue HJ
    Biomacromolecules; 2005; 6(6):3319-27. PubMed ID: 16283761
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro evaluation of porous poly(L-lactic acid) scaffold reinforced by chitin fibers.
    Li X; Liu X; Dong W; Feng Q; Cui F; Uo M; Akasaka T; Watari F
    J Biomed Mater Res B Appl Biomater; 2009 Aug; 90(2):503-9. PubMed ID: 19145630
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Porous poly(L-lactic acid)/apatite composites created by biomimetic process.
    Zhang R; Ma PX
    J Biomed Mater Res; 1999 Jun; 45(4):285-93. PubMed ID: 10321700
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Behavior of osteoblasts on a type I atelocollagen grafted ozone oxidized poly L-lactic acid membrane.
    Suh H; Hwang YS; Lee JE; Han CD; Park JC
    Biomaterials; 2001 Feb; 22(3):219-30. PubMed ID: 11197497
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel basalt fiber-reinforced polylactic acid composite for hard tissue repair.
    Chen X; Li Y; Gu N
    Biomed Mater; 2010 Aug; 5(4):044104. PubMed ID: 20683132
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Block copolymer of polyphosphoester and poly(L-lactic acid) modified surface for enhancing osteoblast adhesion, proliferation, and function.
    Yang XZ; Sun TM; Dou S; Wu J; Wang YC; Wang J
    Biomacromolecules; 2009 Aug; 10(8):2213-20. PubMed ID: 19586040
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrospun nanofibrous scaffolds of poly (L-lactic acid)-dicalcium silicate composite via ultrasonic-aging technique for bone regeneration.
    Dong S; Sun J; Li Y; Li J; Cui W; Li B
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():426-33. PubMed ID: 24411397
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of pretreatment on the surface characteristics of PLLA fibers and subsequent hydroxyapatite coating.
    Peng F; Olson JR; Shaw MT; Wei M
    J Biomed Mater Res B Appl Biomater; 2009 Jan; 88(1):220-9. PubMed ID: 18683229
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Formation of bone-like apatite on poly(L-lactic acid) fibers by a biomimetic process.
    Yuan X; Mak AF; Li J
    J Biomed Mater Res; 2001 Oct; 57(1):140-50. PubMed ID: 11416861
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Osteoblast: osteoclast co-cultures on silk fibroin, chitosan and PLLA films.
    Jones GL; Motta A; Marshall MJ; El Haj AJ; Cartmell SH
    Biomaterials; 2009 Oct; 30(29):5376-84. PubMed ID: 19647869
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functionalisation of PLLA nanofiber scaffolds using a possible cooperative effect between collagen type I and BMP-2: impact on growth and osteogenic differentiation of human mesenchymal stem cells.
    Schofer MD; Veltum A; Theisen C; Chen F; Agarwal S; Fuchs-Winkelmann S; Paletta JR
    J Mater Sci Mater Med; 2011 Jul; 22(7):1753-62. PubMed ID: 21604139
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Apatite-forming ability of bioactive poly(l-lactic acid)/grafted silica nanocomposites in simulated body fluid.
    Yan S; Yin J; Cui L; Yang Y; Chen X
    Colloids Surf B Biointerfaces; 2011 Aug; 86(1):218-24. PubMed ID: 21536416
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of poly (L-lactic acid) nanofiber orientation on osteogenic responses of human osteoblast-like MG63 cells.
    Wang B; Cai Q; Zhang S; Yang X; Deng X
    J Mech Behav Biomed Mater; 2011 May; 4(4):600-9. PubMed ID: 21396609
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surface modification of poly(L-lactic acid) by entrapment of chitosan and its derivatives to promote osteoblasts-like compatibility.
    Liu Z; Jiao Y; Zhang Z; Zhou C
    J Biomed Mater Res A; 2007 Dec; 83(4):1110-1116. PubMed ID: 17584905
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.