These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 18058198)

  • 1. Apatite-forming ability of polyglutamic acid hydrogels in a body-simulating environment.
    Sugino A; Miyazaki T; Ohtsuki C
    J Mater Sci Mater Med; 2008 Jun; 19(6):2269-74. PubMed ID: 18058198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Apatite mineralization behavior on polyglutamic acid hydrogels in aqueous condition: effects of molecular weight.
    Miyazaki T; Mukai J; Ishida E; Ohtsuki C
    Biomed Mater Eng; 2013; 23(5):339-47. PubMed ID: 23988706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomineralization on chemically synthesized collagen containing immobilized poly-γ-glutamic acid.
    Miyazaki T; Kuramoto A; Hirakawa A; Shirosaki Y; Ohtsuki C
    Dent Mater J; 2013; 32(4):544-9. PubMed ID: 23903634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modification of polyglutamic acid with silanol groups and calcium salts to induce calcification in a simulated body fluid.
    Koh MY; Ohtsuki C; Miyazaki T
    J Biomater Appl; 2011 Feb; 25(6):581-94. PubMed ID: 20207777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gradient structural bone-like apatite induced by chitosan hydrogel via ion assembly.
    Li B; Wang Y; Jia D; Zhou Y
    J Biomater Sci Polym Ed; 2011; 22(4-6):505-17. PubMed ID: 20566043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro apatite forming ability of type I collagen hydrogels containing bioactive glass and silica sol-gel particles.
    Eglin D; Maalheem S; Livage J; Coradin T
    J Mater Sci Mater Med; 2006 Feb; 17(2):161-7. PubMed ID: 16502249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simple surface modification of poly(epsilon-caprolactone) to induce its apatite-forming ability.
    Oyane A; Uchida M; Yokoyama Y; Choong C; Triffitt J; Ito A
    J Biomed Mater Res A; 2005 Oct; 75(1):138-45. PubMed ID: 16044403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Apatite-forming ability of vinylphosphonic acid-based copolymer in simulated body fluid: effects of phosphate group content.
    Hamai R; Shirosaki Y; Miyazaki T
    J Mater Sci Mater Med; 2016 Oct; 27(10):152. PubMed ID: 27585911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation and characteristics of the apatite layer on plasma-sprayed hydroxyapatite coatings in simulated body fluid.
    Weng J; Liu Q; Wolke JG; Zhang X; de Groot K
    Biomaterials; 1997 Aug; 18(15):1027-35. PubMed ID: 9239464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclic silicate active site and stereochemical match for apatite nucleation on pseudowollastonite bioceramic-bone interfaces.
    Sahai N; Anseau M
    Biomaterials; 2005 Oct; 26(29):5763-70. PubMed ID: 15949543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Apatite formation on a hydrogel containing sulfinic acid group under physiological conditions.
    Hamai R; Shirosaki Y; Miyazaki T
    J Biomed Mater Res B Appl Biomater; 2017 Oct; 105(7):1924-1929. PubMed ID: 27283204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioactive polymethylmethacrylate bone cement modified with combinations of phosphate group-containing monomers and calcium acetate.
    Liu J; Shirosaki Y; Miyazaki T
    J Biomater Appl; 2015 Apr; 29(9):1296-303. PubMed ID: 25568169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An X-ray photoelectron spectroscopy study of the process of apatite formation on bioactive titanium metal.
    Takadama H; Kim HM; Kokubo T; Nakamura T
    J Biomed Mater Res; 2001 May; 55(2):185-93. PubMed ID: 11255170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bonelike apatite formation on niobium metal treated in aqueous NaOH.
    Godley R; Starosvetsky D; Gotman I
    J Mater Sci Mater Med; 2004 Oct; 15(10):1073-7. PubMed ID: 15516867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sodium silicate gel as a precursor for the in vitro nucleation and growth of a bone-like apatite coating in compact and porous polymeric structures.
    Oliveira AL; Malafaya PB; Reis RL
    Biomaterials; 2003 Jul; 24(15):2575-84. PubMed ID: 12726711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone-like apatite layer formation on the new resin-modified glass-ionomer cement.
    Nourmohammadi J; Sadrnezhaad SK; Ghader AB
    J Mater Sci Mater Med; 2008 Dec; 19(12):3507-14. PubMed ID: 18622768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of calcium salt content in the poly(epsilon-caprolactone)/silica nanocomposite on the nucleation and growth behavior of apatite layer.
    Rhee SH
    J Biomed Mater Res A; 2003 Dec; 67(4):1131-8. PubMed ID: 14624498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Apatite-forming ability of alginate fibers treated with calcium hydroxide solution.
    Kokubo T; Hanakawa M; Kawashita M; Minoda M; Beppu T; Miyamoto T; Nakamura T
    J Mater Sci Mater Med; 2004 Sep; 15(9):1007-12. PubMed ID: 15448408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of bonelike apatite formation on bioactive tantalum metal in a simulated body fluid.
    Miyaza T; Kim HM; Kokubo T; Ohtsuki C; Kato H; Nakamura T
    Biomaterials; 2002 Feb; 23(3):827-32. PubMed ID: 11771702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microstructure and chemistry affects apatite nucleation on calcium phosphate bone graft substitutes.
    Campion CR; Ball SL; Clarke DL; Hing KA
    J Mater Sci Mater Med; 2013 Mar; 24(3):597-610. PubMed ID: 23242766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.