These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 18058198)

  • 21. Apatite formation on/in hydrogel matrices using an alternate soaking process: II. Effect of swelling ratios of poly(vinyl alcohol) hydrogel matrices on apatite formation.
    Taguchi T; Kishida A; Akashi M
    J Biomater Sci Polym Ed; 1999; 10(3):331-9. PubMed ID: 10189101
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro bioactivity of a biocomposite fabricated from HA and Ti powders by powder metallurgy method.
    Ning CQ; Zhou Y
    Biomaterials; 2002 Jul; 23(14):2909-15. PubMed ID: 12069332
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioactive PMMA bone cement prepared by modification with methacryloxypropyltrimethoxysilane and calcium chloride.
    Miyazaki T; Ohtsuki C; Kyomoto M; Tanihara M; Mori A; Kuramoto K
    J Biomed Mater Res A; 2003 Dec; 67(4):1417-23. PubMed ID: 14624530
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Petal-like apatite formed on the surface of tricalcium phosphate ceramic after soaking in distilled water.
    Lin FH; Liao CJ; Chen KS; Su JS; Lin CP
    Biomaterials; 2001 Nov; 22(22):2981-92. PubMed ID: 11575472
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface structure and apatite-forming ability of polyethylene substrates irradiated by oxygen cluster ion beams.
    Kawashita M; Itoh S; Araki R; Miyamoto K; Takaoka GH
    J Biomed Mater Res A; 2007 Sep; 82(4):995-1003. PubMed ID: 17335033
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Compositional dependence of the apatite formation ability of Ti-Zr alloys designed for hard tissue reconstruction.
    Miyazaki T; Hosokawa T; Yokoyama K; Shiraishi T
    J Mater Sci Mater Med; 2020 Nov; 31(11):110. PubMed ID: 33165675
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synergistic effect of silanol group and calcium ion in chitosan membrane on apatite forming ability in simulated body fluid.
    Rhee SH; Lee SJ; Tanaka J
    J Biomater Sci Polym Ed; 2006; 17(3):357-68. PubMed ID: 16689020
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Controlled release of strontium ions from a bioactive Ti metal with a Ca-enriched surface layer.
    Yamaguchi S; Nath S; Matsushita T; Kokubo T
    Acta Biomater; 2014 May; 10(5):2282-9. PubMed ID: 24486909
    [TBL] [Abstract][Full Text] [Related]  

  • 29. XRD, SEM-EDS, and FTIR studies of in vitro growth of an apatite-like layer on sol-gel glasses.
    Vallet-Regí M; Romero AM; Ragel CV; LeGeros RZ
    J Biomed Mater Res; 1999 Mar; 44(4):416-21. PubMed ID: 10397945
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic study of calcium phosphate formation on porous HA/TCP ceramics.
    Duan YR; Zhang ZR; Wang CY; Chen JY; Zhang XD
    J Mater Sci Mater Med; 2005 Sep; 16(9):795-801. PubMed ID: 16167107
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of simulated body fluid formulation on orthopedic device apatite-forming ability assessment.
    Nguyen AK; Nelson SB; Skoog SA; Jaipan P; Petrochenko PE; Kaiser A; Lo L; Moreno J; Narayan RJ; Goering PL; Kumar G
    J Biomed Mater Res B Appl Biomater; 2023 May; 111(5):987-995. PubMed ID: 36444900
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [The effects of surface morphology of calcium phosphate ceramics on apatite formation in dynamic SBF].
    Duan Y; Lü W; Wang C; Chen J; Zhang X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Jun; 19(2):186-90. PubMed ID: 12224277
    [TBL] [Abstract][Full Text] [Related]  

  • 33. TEM-EDX study of mechanism of bonelike apatite formation on bioactive titanium metal in simulated body fluid.
    Takadama H; Kim HM; Kokubo T; Nakamura T
    J Biomed Mater Res; 2001 Dec; 57(3):441-8. PubMed ID: 11523039
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Effects of simulated body fluid flowing rate on bone-like apatite formation on porous calcium phosphate ceramics].
    Duan YR; Liu KW; Chen JY; Zhang XD
    Space Med Med Eng (Beijing); 2002 Jun; 15(3):203-7. PubMed ID: 12224554
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biomineralization ability and interaction of mineral trioxide aggregate and white portland cement with dentin in a phosphate-containing fluid.
    Reyes-Carmona JF; Felippe MS; Felippe WT
    J Endod; 2009 May; 35(5):731-6. PubMed ID: 19410094
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fluoride-containing nanoporous calcium-silicate MTA cements for endodontics and oral surgery: early fluorapatite formation in a phosphate-containing solution.
    Gandolfi MG; Taddei P; Siboni F; Modena E; Ginebra MP; Prati C
    Int Endod J; 2011 Oct; 44(10):938-49. PubMed ID: 21726240
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface potential change in bioactive titanium metal during the process of apatite formation in simulated body fluid.
    Kim HM; Himeno T; Kawashita M; Lee JH; Kokubo T; Nakamura T
    J Biomed Mater Res A; 2003 Dec; 67(4):1305-9. PubMed ID: 14624517
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sol-gel modification of silicone to induce apatite-forming ability.
    Oyane A; Nakanishi K; Kim HM; Miyaji F; Kokubo T; Soga N; Nakamura T
    Biomaterials; 1999 Jan; 20(1):79-84. PubMed ID: 9916774
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bioactive Co-Cr alloy for biomedical applications prepared by surface modification using self-assembled monolayers and poly-γ-glutamic acid.
    Liu C; Matsunami C; Shirosaki Y; Miyazaki T
    Dent Mater J; 2015; 34(5):707-12. PubMed ID: 26438996
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel bioactive materials developed by simulated body fluid evaluation: Surface-modified Ti metal and its alloys.
    Kokubo T; Yamaguchi S
    Acta Biomater; 2016 Oct; 44():16-30. PubMed ID: 27521496
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.