These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 18058242)

  • 1. The effect of numerical error on the reproducibility of molecular geometry optimizations.
    Williams CI; Feher M
    J Comput Aided Mol Des; 2008 Jan; 22(1):39-51. PubMed ID: 18058242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Geometry Optimizations on QM-Cluster and QM/MM Studies of Reaction Energies in Proteins.
    Sumner S; Söderhjelm P; Ryde U
    J Chem Theory Comput; 2013 Sep; 9(9):4205-14. PubMed ID: 26592409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and Evaluation of Geometry Optimization Algorithms in Conjunction with ANI Potentials.
    Hao D; He X; Roitberg AE; Zhang S; Wang J
    J Chem Theory Comput; 2022 Feb; 18(2):978-991. PubMed ID: 35020396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical errors in minimization based binding energy calculations.
    Feher M; Williams CI
    J Chem Inf Model; 2012 Dec; 52(12):3200-12. PubMed ID: 23146112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geometry optimization for peptides and proteins: comparison of Cartesian and internal coordinates.
    Koslover EF; Wales DJ
    J Chem Phys; 2007 Dec; 127(23):234105. PubMed ID: 18154373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of several economical computational methods for geometry optimization of phosphorus acid derivatives.
    Sigurdsson S; Strömberg R
    Nucleosides Nucleotides Nucleic Acids; 2001; 20(4-7):1381-4. PubMed ID: 11563027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating computational predictions of the relative stabilities of polymorphic pharmaceuticals.
    Mitchell-Koch KR; Matzger AJ
    J Pharm Sci; 2008 Jun; 97(6):2121-9. PubMed ID: 17828731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient Geometry Minimization and Transition Structure Optimization Using Interpolated Potential Energy Surfaces and Iteratively Updated Hessians.
    Zheng J; Frisch MJ
    J Chem Theory Comput; 2017 Dec; 13(12):6424-6432. PubMed ID: 29045137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive molecular mechanics model for oxidized type I copper proteins: active site structures, strain energies, and entatic bulging.
    Deeth RJ
    Inorg Chem; 2007 May; 46(11):4492-503. PubMed ID: 17461575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On possible pitfalls in ab initio quantum mechanics/molecular mechanics minimization approaches for studies of enzymatic reactions.
    Klähn M; Braun-Sand S; Rosta E; Warshel A
    J Phys Chem B; 2005 Aug; 109(32):15645-50. PubMed ID: 16852982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ab initio study of hydrogen-bond formation between aliphatic and phenolic hydroxy groups and selected amino acid side chains.
    Nagy PI; Erhardt PW
    J Phys Chem A; 2008 May; 112(18):4342-54. PubMed ID: 18373368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Systematic Study of DFT Performance for Geometry Optimizations of Ionic Liquid Clusters.
    Seeger ZL; Izgorodina EI
    J Chem Theory Comput; 2020 Oct; 16(10):6735-6753. PubMed ID: 32865998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DL-FIND: an open-source geometry optimizer for atomistic simulations.
    Kästner J; Carr JM; Keal TW; Thiel W; Wander A; Sherwood P
    J Phys Chem A; 2009 Oct; 113(43):11856-65. PubMed ID: 19639948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geometry optimization made simple with translation and rotation coordinates.
    Wang LP; Song C
    J Chem Phys; 2016 Jun; 144(21):214108. PubMed ID: 27276946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transition state search and geometry relaxation throughout chemical compound space with quantum machine learning.
    Heinen S; von Rudorff GF; von Lilienfeld OA
    J Chem Phys; 2022 Dec; 157(22):221102. PubMed ID: 36546806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting Activity Cliffs with Free-Energy Perturbation.
    Pérez-Benito L; Casajuana-Martin N; Jiménez-Rosés M; van Vlijmen H; Tresadern G
    J Chem Theory Comput; 2019 Mar; 15(3):1884-1895. PubMed ID: 30776226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomdroid: a computational chemistry tool for mobile platforms.
    Feldt J; Mata RA; Dieterich JM
    J Chem Inf Model; 2012 Apr; 52(4):1072-8. PubMed ID: 22404249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational study on the geometry optimization and excited - state properties of riboflavin by ArgusLab 4.0.1.
    Hafeez A; Naz A; Naeem S; Bano K; Akhtar N
    Pak J Pharm Sci; 2013 May; 26(3):487-93. PubMed ID: 23625421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The combinatorial distance geometry method for the calculation of molecular conformation. I. A new approach to an old problem.
    Havel TF; Kuntz ID; Crippen GM
    J Theor Biol; 1983 Oct; 104(3):359-81. PubMed ID: 6656266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting Molecular Energy Using Force-Field Optimized Geometries and Atomic Vector Representations Learned from an Improved Deep Tensor Neural Network.
    Lu J; Wang C; Zhang Y
    J Chem Theory Comput; 2019 Jul; 15(7):4113-4121. PubMed ID: 31142110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.