BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 18058354)

  • 1. Comparison of the temporal hemifield and nasal hemifield sensitivity in patients with early-onset convergent strabismus.
    Polati M; Malta RF; Alves CA
    Strabismus; 2007; 15(4):181-91. PubMed ID: 18058354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Age-dependent normative values for differential luminance sensitivity in automated static perimetry using the Octopus 101.
    Hermann A; Paetzold J; Vonthein R; Krapp E; Rauscher S; Schiefer U
    Acta Ophthalmol; 2008 Jun; 86(4):446-55. PubMed ID: 18070224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitivity in the nasal and temporal hemifields in children treated for cataract.
    Bowering ER; Maurer D; Lewis TL; Brent HP
    Invest Ophthalmol Vis Sci; 1993 Dec; 34(13):3501-9. PubMed ID: 8258506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-development of VEP motion response and binocular vision in normal infants and infantile esotropes.
    Birch EE; Fawcett S; Stager D
    Invest Ophthalmol Vis Sci; 2000 Jun; 41(7):1719-23. PubMed ID: 10845591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between foveal threshold and visual acuity using the Humphrey visual field analyzer.
    Flaxel CJ; Samples JR; Dustin L
    Am J Ophthalmol; 2007 May; 143(5):875-7. PubMed ID: 17452176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility of saccadic vector optokinetic perimetry: a method of automated static perimetry for children using eye tracking.
    Murray IC; Fleck BW; Brash HM; Macrae ME; Tan LL; Minns RA
    Ophthalmology; 2009 Oct; 116(10):2017-26. PubMed ID: 19560207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Comparison of local differential luminance sensitivity (dls) between Oculus Twinfield Perimeter and Humphrey Field Analyzer 630 (HFA I) in normal volunteers of varying ages].
    Lorch L; Dietrich TJ; Schwabe R; Schiefer U
    Klin Monbl Augenheilkd; 2001 Dec; 218(12):782-94. PubMed ID: 11805870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between visual acuity and nasal field thresholds in patients with temporal hemianopia.
    Manor RS; Dickerman Z
    J Clin Neuroophthalmol; 1991 Mar; 11(1):66-9. PubMed ID: 1827465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inferonasal quadrant of the visual field is not constricted in patients with infantile esotropia when evaluated by means of automated perimetry.
    Haefliger IO; Safran AB; Mermillod B; Roth A
    J Clin Neuroophthalmol; 1990 Jun; 10(2):118-20. PubMed ID: 2141852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal modulation perimetry: the effects of aging and eccentricity on sensitivity in normals.
    Casson EJ; Johnson CA; Nelson-Quigg JM
    Invest Ophthalmol Vis Sci; 1993 Oct; 34(11):3096-102. PubMed ID: 8407217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Association of optic disc configuration and clustered visual field sensitivity in glaucomatous eyes with hemifield visual field defects.
    Nagai-Kusuhara A; Nakamura M; Kanamori A; Negi A
    J Glaucoma; 2009 Jan; 18(1):62-8. PubMed ID: 19142137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of pupil perimetry and visual perimetry in normal eyes: decibel sensitivity and variability.
    Hong S; Narkiewicz J; Kardon RH
    Invest Ophthalmol Vis Sci; 2001 Apr; 42(5):957-65. PubMed ID: 11274072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual function in anterior ischemic optic neuropathy: effect of Vision Restoration Therapy--a pilot study.
    Jung CS; Bruce B; Newman NJ; Biousse V
    J Neurol Sci; 2008 May; 268(1-2):145-9. PubMed ID: 18207164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency doubling technology perimetry in normal children.
    Quinn LM; Gardiner SK; Wheeler DT; Newkirk M; Johnson CA
    Am J Ophthalmol; 2006 Dec; 142(6):983-9. PubMed ID: 17046702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Points of a normal visual field are not statistically independent.
    Lachenmayr BJ; Kiermeir U; Kojetinsky S
    Ger J Ophthalmol; 1995 May; 4(3):175-81. PubMed ID: 7663331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anomalies of motion perception in infantile esotropia.
    Fawcett S; Raymond JE; Astle WF; Skov CM
    Invest Ophthalmol Vis Sci; 1998 Apr; 39(5):724-35. PubMed ID: 9538879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monocular acuity and stereopsis in infantile esotropia.
    Birch EE; Stager DR
    Invest Ophthalmol Vis Sci; 1985 Nov; 26(11):1624-30. PubMed ID: 4055294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation mechanisms, eccentricity profiles, and clinical implementation of red-on-white perimetry.
    Zele AJ; Dang TM; O'Loughlin RK; Guymer RH; Harper A; Vingrys AJ
    Optom Vis Sci; 2008 May; 85(5):309-17. PubMed ID: 18451735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Humphrey Matrix perimetry in optic nerve and chiasmal disorders: comparison with Humphrey SITA standard 24-2.
    Huang CQ; Carolan J; Redline D; Taravati P; Woodward KR; Johnson CA; Wall M; Keltner JL
    Invest Ophthalmol Vis Sci; 2008 Mar; 49(3):917-23. PubMed ID: 18326712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motion detection in normal infants and young patients with infantile esotropia.
    Bosworth RG; Birch EE
    Vision Res; 2005 Jun; 45(12):1557-67. PubMed ID: 15781073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.