BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 18058506)

  • 1. An enzymatic transglycosylation of purine bases.
    Roivainen J; Elizarova T; Lapinjoki S; Mikhailopulo IA; Esipov RS; Miroshnikov AI
    Nucleosides Nucleotides Nucleic Acids; 2007; 26(8-9):905-9. PubMed ID: 18058506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recombinant purine nucleoside phosphorylases from thermophiles: preparation, properties and activity towards purine and pyrimidine nucleosides.
    Zhou X; Szeker K; Janocha B; Böhme T; Albrecht D; Mikhailopulo IA; Neubauer P
    FEBS J; 2013 Mar; 280(6):1475-90. PubMed ID: 23332162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Screening of catalytically active microorganisms for the synthesis of 6-modified purine nucleosides.
    Trelles JA; Valino AL; Runza V; Lewkowicz ES; Iribarren AM
    Biotechnol Lett; 2005 Jun; 27(11):759-63. PubMed ID: 16086256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemo-enzymatic synthesis of 3-deoxy-beta-D-ribofuranosyl purines and study of their biological properties.
    Barai VN; Zinchenko AI; Eroshevskaya LA; Zhernosek EV; Balzarini J; De Clercq E; Mikhailopulo IA
    Nucleosides Nucleotides Nucleic Acids; 2003; 22(5-8):751-3. PubMed ID: 14565270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recombinant bacterial cells as efficient biocatalysts for the production of nucleosides.
    Spoldi E; Ghisotti D; Calì S; Grisa M; Orsini G; Tonon G; Zuffi G
    Nucleosides Nucleotides Nucleic Acids; 2001; 20(4-7):977-9. PubMed ID: 11563158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 6-Methylpurine derived sugar modified nucleosides: Synthesis and evaluation of their substrate activity with purine nucleoside phosphorylases.
    Hassan AE; Abou-Elkhair RA; Parker WB; Allan PW; Secrist JA
    Bioorg Chem; 2016 Apr; 65():9-16. PubMed ID: 26745284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Expedient Synthesis of Flexible Nucleosides through Enzymatic Glycosylation of Proximal and Distal Fleximer Bases.
    Vichier-Guerre S; Ku TC; Pochet S; Seley-Radtke KL
    Chembiochem; 2020 May; 21(10):1412-1417. PubMed ID: 31899839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemo-Enzymatic Generation of Highly Fluorescent Nucleoside Analogs Using Purine-Nucleoside Phosphorylase.
    Stachelska-Wierzchowska A; Wierzchowski J
    Biomolecules; 2024 Jun; 14(6):. PubMed ID: 38927104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transition-state interactions revealed in purine nucleoside phosphorylase by binding isotope effects.
    Murkin AS; Tyler PC; Schramm VL
    J Am Chem Soc; 2008 Feb; 130(7):2166-7. PubMed ID: 18229929
    [No Abstract]   [Full Text] [Related]  

  • 10. Efficient Synthesis of Purine Nucleoside Analogs by a New Trimeric Purine Nucleoside Phosphorylase from
    Liu G; Cheng T; Chu J; Li S; He B
    Molecules; 2019 Dec; 25(1):. PubMed ID: 31888088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Polymethylene derivatives of nucleic bases with omega-functional groups: IV. [7-(2-oxocyclohexyl)-7-oxoheptyl]purines].
    Kritsin AM; Versalainen J; Komissarov VV
    Bioorg Khim; 2005; 31(3):288-94. PubMed ID: 16004387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupled biocatalysts applied to the synthesis of nucleosides.
    Medici R; Porro MT; Lewkowicz E; Montserrat J; Iribarren AM
    Nucleic Acids Symp Ser (Oxf); 2008; (52):541-2. PubMed ID: 18776493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions of trimeric purine nucleoside phosphorylases with ground state analogues--calorimetric and fluorimetric studies.
    Wielgus-Kutrowska B; Frank J; Holý A; Koellner G; Bzowska A
    Nucleosides Nucleotides Nucleic Acids; 2003; 22(5-8):1695-8. PubMed ID: 14565498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A copper-catalyzed domino route toward purine-fused tricyclic derivatives.
    Xie MS; Chu ZL; Niu HY; Qu GR; Guo HM
    J Org Chem; 2014 Feb; 79(3):1093-9. PubMed ID: 24456227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of 6-(2-thienyl)purine nucleoside derivatives that form unnatural base pairs with pyridin-2-one nucleosides.
    Fujiwara T; Kimoto M; Sugiyama H; Hirao I; Yokoyama S
    Bioorg Med Chem Lett; 2001 Aug; 11(16):2221-3. PubMed ID: 11514175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel modified purine bases and nucleosides: new methodologies of synthesis and biological activity.
    Hocek M
    Nucleic Acids Symp Ser (Oxf); 2005; (49):29-30. PubMed ID: 17150617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Introduction of pseudo-base benzimidazole derivatives into nucleosides via base exchange by a nucleoside metabolic enzyme.
    Hatano A; Matsuzaka R; Shimane G; Wakana H; Suzuki K; Nishioka C; Kojima A; Kidowaki M
    Bioorg Med Chem; 2023 Aug; 91():117411. PubMed ID: 37451053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adenosine binding to low-molecular-weight purine nucleoside phosphorylase: the structural basis for recognition based on its complex with the enzyme from Schistosoma mansoni.
    Pereira HM; Rezende MM; Castilho MS; Oliva G; Garratt RC
    Acta Crystallogr D Biol Crystallogr; 2010 Jan; 66(Pt 1):73-9. PubMed ID: 20057051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-coupling reactions of unprotected halopurine bases, nucleosides, nucleotides and nucleoside triphosphates with 4-boronophenylalanine in water. Synthesis of (purin-8-yl)- and (purin-6-yl)phenylalanines.
    Capek P; Pohl R; Hocek M
    Org Biomol Chem; 2006 Jun; 4(11):2278-84. PubMed ID: 16729137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of Fluorine-Containing Analogues of Purine Deoxynucleosides: Optimization of Enzymatic Transglycosylation Conditions.
    Drenichev MS; Dorinova EO; Varizhuk IV; Oslovsky VE; Varga MA; Esipov RS; Lykoshin DD; Alexeev CS
    Dokl Biochem Biophys; 2022 Apr; 503(1):52-58. PubMed ID: 35538278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.