These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 18058788)

  • 1. Are environmentally coupled enzymatic hydrogen tunneling reactions influenced by changes in solution viscosity?
    Hay S; Pudney CR; Sutcliffe MJ; Scrutton NS
    Angew Chem Int Ed Engl; 2008; 47(3):537-40. PubMed ID: 18058788
    [No Abstract]   [Full Text] [Related]  

  • 2. H-tunneling in the multiple H-transfers of the catalytic cycle of morphinone reductase and in the reductive half-reaction of the homologous pentaerythritol tetranitrate reductase.
    Basran J; Harris RJ; Sutcliffe MJ; Scrutton NS
    J Biol Chem; 2003 Nov; 278(45):43973-82. PubMed ID: 12941965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporation of hydrostatic pressure into models of hydrogen tunneling highlights a role for pressure-modulated promoting vibrations.
    Hay S; Scrutton NS
    Biochemistry; 2008 Sep; 47(37):9880-7. PubMed ID: 18717597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relative timing of hydrogen and proton transfers in the reaction of flavin oxidation catalyzed by choline oxidase.
    Gannavaram S; Gadda G
    Biochemistry; 2013 Feb; 52(7):1221-6. PubMed ID: 23339467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flavins as Covalent Catalysts: New Mechanisms Emerge.
    Piano V; Palfey BA; Mattevi A
    Trends Biochem Sci; 2017 Jun; 42(6):457-469. PubMed ID: 28274732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How does pressure affect barrier compression and isotope effects in an enzymatic hydrogen tunneling reaction?
    Johannissen LO; Scrutton NS; Sutcliffe MJ
    Angew Chem Int Ed Engl; 2011 Feb; 50(9):2129-32. PubMed ID: 21344567
    [No Abstract]   [Full Text] [Related]  

  • 7. Secondary kinetic isotope effects as probes of environmentally-coupled enzymatic hydrogen tunneling reactions.
    Hay S; Pang J; Monaghan PJ; Wang X; Evans RM; Sutcliffe MJ; Allemann RK; Scrutton NS
    Chemphyschem; 2008 Aug; 9(11):1536-9. PubMed ID: 18613201
    [No Abstract]   [Full Text] [Related]  

  • 8. C-terminal residues of ferredoxin-NAD(P)
    Seo D; Asano T
    Photosynth Res; 2018 Jun; 136(3):275-290. PubMed ID: 29119426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enantioselective Hydrogen Atom Transfer: Discovery of Catalytic Promiscuity in Flavin-Dependent 'Ene'-Reductases.
    Sandoval BA; Meichan AJ; Hyster TK
    J Am Chem Soc; 2017 Aug; 139(33):11313-11316. PubMed ID: 28780870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stabilization of an intermediate in the oxidative half-reaction of human liver glycolate oxidase.
    Pennati A; Gadda G
    Biochemistry; 2011 Jan; 50(1):1-3. PubMed ID: 21141873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA detection through signal amplification by using NADH: flavin oxidoreductase and oligonucleotide-flavin conjugates as cofactors.
    Simon P; Dueymes C; Fontecave M; Décout JL
    Angew Chem Int Ed Engl; 2005 Apr; 44(18):2764-2767. PubMed ID: 15772944
    [No Abstract]   [Full Text] [Related]  

  • 12. Suppression of electron transfer to dioxygen by charge transfer and electron transfer complexes in the FAD-dependent reductase component of toluene dioxygenase.
    Lin TY; Werther T; Jeoung JH; Dobbek H
    J Biol Chem; 2012 Nov; 287(45):38338-46. PubMed ID: 22992736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of a C4a-hydroperoxyflavin intermediate in the reaction of a flavoprotein oxidase.
    Sucharitakul J; Prongjit M; Haltrich D; Chaiyen P
    Biochemistry; 2008 Aug; 47(33):8485-90. PubMed ID: 18652479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reaction mechanism of monoamine oxidase from QM/MM calculations.
    Abad E; Zenn RK; Kästner J
    J Phys Chem B; 2013 Nov; 117(46):14238-46. PubMed ID: 24164690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. REVERSIBLE DIRECT HYDROGEN TRANSFER FROM REDUCED PYRIDINE NUCLETODIES TO CYTOCHROME B5 REDUCTASE.
    STRITTMATTER P
    J Biol Chem; 1964 Sep; 239():3043-50. PubMed ID: 14217894
    [No Abstract]   [Full Text] [Related]  

  • 16. Evolution of hydrogen gas from nicotinamide nucleotides by Proteus vulgaris.
    Feigenblum E; Krasna AI
    Biochim Biophys Acta; 1967 Jul; 141(2):250-9. PubMed ID: 4382999
    [No Abstract]   [Full Text] [Related]  

  • 17. [Reversible oxidation-reduction of NAD by hydrogen, catalyzed by soluble hydrogenase from Alcaligenes eutrophus Z-1].
    Pinchukova EE; Varfolomeev SD
    Biokhimiia; 1980 Aug; 45(8):1405-11. PubMed ID: 7236793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous Measurement of Superoxide/Hydrogen Peroxide and NADH Production by Flavin-containing Mitochondrial Dehydrogenases.
    Mailloux RJ; Young A; O'Brien M; Gill RM
    J Vis Exp; 2018 Feb; (132):. PubMed ID: 29553554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The oxidation and reduction of pyridine nucleotides by Rhodopseudomonas spheroides and Chlorobium thiosulfatophilum.
    Jones OT; Whale FR
    Arch Mikrobiol; 1970; 72(1):48-59. PubMed ID: 4317093
    [No Abstract]   [Full Text] [Related]  

  • 20. Haem, flavin and oxygen interactions in Hmp, a flavohaemoglobin from Escherichia coli.
    Cooper CE; Ioannidis N; D'mello R; Poole RK
    Biochem Soc Trans; 1994 Aug; 22(3):709-13. PubMed ID: 7821669
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.