BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 18058789)

  • 1. Guanidinoneomycin B recognition of an HIV-1 RNA helix.
    Staple DW; Venditti V; Niccolai N; Elson-Schwab L; Tor Y; Butcher SE
    Chembiochem; 2008 Jan; 9(1):93-102. PubMed ID: 18058789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solution structure and thermodynamic investigation of the HIV-1 frameshift inducing element.
    Staple DW; Butcher SE
    J Mol Biol; 2005 Jun; 349(5):1011-23. PubMed ID: 15927637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solution structure of the HIV-1 frameshift inducing stem-loop RNA.
    Staple DW; Butcher SE
    Nucleic Acids Res; 2003 Aug; 31(15):4326-31. PubMed ID: 12888491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of the HIV-1 frameshift site RNA bound to a small molecule inhibitor of viral replication.
    Marcheschi RJ; Tonelli M; Kumar A; Butcher SE
    ACS Chem Biol; 2011 Aug; 6(8):857-64. PubMed ID: 21648432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the HIV-1 Genomic RNA Dimerization Initiation Site Binding to Aminoglycoside Antibiotics Using Isothermal Titration Calorimetry.
    Bernacchi S; Ennifar E
    Methods Mol Biol; 2020; 2113():237-250. PubMed ID: 32006318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selection and characterization of small molecules that bind the HIV-1 frameshift site RNA.
    Marcheschi RJ; Mouzakis KD; Butcher SE
    ACS Chem Biol; 2009 Oct; 4(10):844-54. PubMed ID: 19673541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aminoglycoside binding to the HIV-1 RNA dimerization initiation site: thermodynamics and effect on the kissing-loop to duplex conversion.
    Bernacchi S; Freisz S; Maechling C; Spiess B; Marquet R; Dumas P; Ennifar E
    Nucleic Acids Res; 2007; 35(21):7128-39. PubMed ID: 17942426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energetics of a strongly pH dependent RNA tertiary structure in a frameshifting pseudoknot.
    Nixon PL; Giedroc DP
    J Mol Biol; 2000 Feb; 296(2):659-71. PubMed ID: 10669615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specificity of aminoglycoside binding to RNA constructs derived from the 16S rRNA decoding region and the HIV-RRE activator region.
    Wang Y; Hamasaki K; Rando RR
    Biochemistry; 1997 Jan; 36(4):768-79. PubMed ID: 9020774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NMR structure of stem-loop SL2 of the HIV-1 psi RNA packaging signal reveals a novel A-U-A base-triple platform.
    Amarasinghe GK; De Guzman RN; Turner RB; Summers MF
    J Mol Biol; 2000 May; 299(1):145-56. PubMed ID: 10860728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A structure-based approach for targeting the HIV-1 genomic RNA dimerization initiation site.
    Ennifar E; Paillart JC; Bernacchi S; Walter P; Pale P; Decout JL; Marquet R; Dumas P
    Biochimie; 2007 Oct; 89(10):1195-203. PubMed ID: 17434658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability of HIV Frameshift Site RNA Correlates with Frameshift Efficiency and Decreased Virus Infectivity.
    Garcia-Miranda P; Becker JT; Benner BE; Blume A; Sherer NM; Butcher SE
    J Virol; 2016 Aug; 90(15):6906-6917. PubMed ID: 27194769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NMR structure of the HIV-1 nucleocapsid protein bound to stem-loop SL2 of the psi-RNA packaging signal. Implications for genome recognition.
    Amarasinghe GK; De Guzman RN; Turner RB; Chancellor KJ; Wu ZR; Summers MF
    J Mol Biol; 2000 Aug; 301(2):491-511. PubMed ID: 10926523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of the RNA signal essential for translational frameshifting in HIV-1.
    Gaudin C; Mazauric MH; Traïkia M; Guittet E; Yoshizawa S; Fourmy D
    J Mol Biol; 2005 Jun; 349(5):1024-35. PubMed ID: 15907937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review on architecture of the gag-pol ribosomal frameshifting RNA in human immunodeficiency virus: a variability survey of virus genotypes.
    Qiao Q; Yan Y; Guo J; Du S; Zhang J; Jia R; Ren H; Qiao Y; Li Q
    J Biomol Struct Dyn; 2017 Jun; 35(8):1629-1653. PubMed ID: 27485859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aminoglycoside binding in the major groove of duplex RNA: the thermodynamic and electrostatic forces that govern recognition.
    Jin E; Katritch V; Olson WK; Kharatisvili M; Abagyan R; Pilch DS
    J Mol Biol; 2000 Apr; 298(1):95-110. PubMed ID: 10756107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solution structure of the pseudoknot of SRV-1 RNA, involved in ribosomal frameshifting.
    Michiels PJ; Versleijen AA; Verlaan PW; Pleij CW; Hilbers CW; Heus HA
    J Mol Biol; 2001 Jul; 310(5):1109-23. PubMed ID: 11501999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis for recognition of the RNA major groove in the tau exon 10 splicing regulatory element by aminoglycoside antibiotics.
    Varani L; Spillantini MG; Goedert M; Varani G
    Nucleic Acids Res; 2000 Feb; 28(3):710-9. PubMed ID: 10637322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural change in Rev responsive element RNA of HIV-1 on binding Rev peptide.
    Peterson RD; Feigon J
    J Mol Biol; 1996 Dec; 264(5):863-77. PubMed ID: 9000617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA-ligand interactions: affinity and specificity of aminoglycoside dimers and acridine conjugates to the HIV-1 Rev response element.
    Luedtke NW; Liu Q; Tor Y
    Biochemistry; 2003 Oct; 42(39):11391-403. PubMed ID: 14516190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.