These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

801 related articles for article (PubMed ID: 18058845)

  • 1. Selection of important variables and determination of functional form for continuous predictors in multivariable model building.
    Sauerbrei W; Royston P; Binder H
    Stat Med; 2007 Dec; 26(30):5512-28. PubMed ID: 18058845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Building multivariable regression models with continuous covariates in clinical epidemiology--with an emphasis on fractional polynomials.
    Royston P; Sauerbrei W
    Methods Inf Med; 2005; 44(4):561-71. PubMed ID: 16342923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison between splines and fractional polynomials for multivariable model building with continuous covariates: a simulation study with continuous response.
    Binder H; Sauerbrei W; Royston P
    Stat Med; 2013 Jun; 32(13):2262-77. PubMed ID: 23034770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of influential points and sample size on the selection and replicability of multivariable fractional polynomial models.
    Sauerbrei W; Kipruto E; Balmford J
    Diagn Progn Res; 2023 Apr; 7(1):7. PubMed ID: 37069621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. State of the art in selection of variables and functional forms in multivariable analysis-outstanding issues.
    Sauerbrei W; Perperoglou A; Schmid M; Abrahamowicz M; Becher H; Binder H; Dunkler D; Harrell FE; Royston P; Heinze G;
    Diagn Progn Res; 2020; 4():3. PubMed ID: 32266321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining fractional polynomial model building with multiple imputation.
    Morris TP; White IR; Carpenter JR; Stanworth SJ; Royston P
    Stat Med; 2015 Nov; 34(25):3298-317. PubMed ID: 26095614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability of multivariable fractional polynomial models with selection of variables and transformations: a bootstrap investigation.
    Royston P; Sauerbrei W
    Stat Med; 2003 Feb; 22(4):639-59. PubMed ID: 12590419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model selection in medical research: a simulation study comparing Bayesian model averaging and stepwise regression.
    Genell A; Nemes S; Steineck G; Dickman PW
    BMC Med Res Methodol; 2010 Dec; 10():108. PubMed ID: 21134252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new proposal for multivariable modelling of time-varying effects in survival data based on fractional polynomial time-transformation.
    Sauerbrei W; Royston P; Look M
    Biom J; 2007 Jun; 49(3):453-73. PubMed ID: 17623349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adding local components to global functions for continuous covariates in multivariable regression modeling.
    Binder H; Sauerbrei W
    Stat Med; 2010 Mar; 29(7-8):808-17. PubMed ID: 20213721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new approach to modelling interactions between treatment and continuous covariates in clinical trials by using fractional polynomials.
    Royston P; Sauerbrei W
    Stat Med; 2004 Aug; 23(16):2509-25. PubMed ID: 15287081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Empirical study of the dependence of the results of multivariable flexible survival analyses on model selection strategy.
    Binquet C; Abrahamowicz M; Mahboubi A; Jooste V; Faivre J; Bonithon-Kopp C; Quantin C
    Stat Med; 2008 Dec; 27(30):6470-88. PubMed ID: 18837067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of treatment with a continuous variable: simulation study of power for several methods of analysis.
    Royston P; Sauerbrei W
    Stat Med; 2014 Nov; 33(27):4695-708. PubMed ID: 25244679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regression without regrets -initial data analysis is a prerequisite for multivariable regression.
    Heinze G; Baillie M; Lusa L; Sauerbrei W; Schmidt CO; Harrell FE; Huebner M;
    BMC Med Res Methodol; 2024 Aug; 24(1):178. PubMed ID: 39117997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling continuous covariates with a "spike" at zero: Bivariate approaches.
    Jenkner C; Lorenz E; Becher H; Sauerbrei W
    Biom J; 2016 Jul; 58(4):783-96. PubMed ID: 27072783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability investigations of multivariable regression models derived from low- and high-dimensional data.
    Sauerbrei W; Boulesteix AL; Binder H
    J Biopharm Stat; 2011 Nov; 21(6):1206-31. PubMed ID: 22023687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imputation and variable selection in linear regression models with missing covariates.
    Yang X; Belin TR; Boscardin WJ
    Biometrics; 2005 Jun; 61(2):498-506. PubMed ID: 16011697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A strategy for modelling the effect of a continuous covariate in medicine and epidemiology.
    Royston P
    Stat Med; 2000 Jul; 19(14):1831-47. PubMed ID: 10867674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling continuous exposures with a 'spike' at zero: a new procedure based on fractional polynomials.
    Royston P; Sauerbrei W; Becher H
    Stat Med; 2010 May; 29(11):1219-27. PubMed ID: 20191601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Comparison of Two Strategies for Building an Exposure Prediction Model.
    Heiden M; Mathiassen SE; Garza J; Liv P; Wahlström J
    Ann Occup Hyg; 2016 Jan; 60(1):74-89. PubMed ID: 26424806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.