BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 18059260)

  • 1. Redirecting lipoic acid ligase for cell surface protein labeling with small-molecule probes.
    Fernández-Suárez M; Baruah H; Martínez-Hernández L; Xie KT; Baskin JM; Bertozzi CR; Ting AY
    Nat Biotechnol; 2007 Dec; 25(12):1483-7. PubMed ID: 18059260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Yeast display evolution of a kinetically efficient 13-amino acid substrate for lipoic acid ligase.
    Puthenveetil S; Liu DS; White KA; Thompson S; Ting AY
    J Am Chem Soc; 2009 Nov; 131(45):16430-8. PubMed ID: 19863063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-step protein labeling utilizing lipoic acid ligase and Sonogashira cross-coupling.
    Hauke S; Best M; Schmidt TT; Baalmann M; Krause A; Wombacher R
    Bioconjug Chem; 2014 Sep; 25(9):1632-7. PubMed ID: 25152073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site-specific protein modification using lipoic acid ligase and bis-aryl hydrazone formation.
    Cohen JD; Zou P; Ting AY
    Chembiochem; 2012 Apr; 13(6):888-94. PubMed ID: 22492621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase.
    Chen I; Howarth M; Lin W; Ting AY
    Nat Methods; 2005 Feb; 2(2):99-104. PubMed ID: 15782206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipoic acid metabolism in Escherichia coli: the lplA and lipB genes define redundant pathways for ligation of lipoyl groups to apoprotein.
    Morris TW; Reed KE; Cronan JE
    J Bacteriol; 1995 Jan; 177(1):1-10. PubMed ID: 8002607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorophore targeting to cellular proteins via enzyme-mediated azide ligation and strain-promoted cycloaddition.
    Yao JZ; Uttamapinant C; Poloukhtine A; Baskin JM; Codelli JA; Sletten EM; Bertozzi CR; Popik VV; Ting AY
    J Am Chem Soc; 2012 Feb; 134(8):3720-8. PubMed ID: 22239252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Further assessments of ligase LplA-mediated modifications of proteins in vitro and in cellulo.
    Schirer A; Rouch A; Marcheteau E; Stojko J; Sophie Landron ; Jeantet E; Fould B; Ferry G; Boutin JA
    Mol Biol Rep; 2022 Jan; 49(1):149-161. PubMed ID: 34718939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum dot targeting with lipoic acid ligase and HaloTag for single-molecule imaging on living cells.
    Liu DS; Phipps WS; Loh KH; Howarth M; Ting AY
    ACS Nano; 2012 Dec; 6(12):11080-7. PubMed ID: 23181687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-Specific Protein Labeling Utilizing Lipoic Acid Ligase (LplA) and Bioorthogonal Inverse Electron Demand Diels-Alder Reaction.
    Baalmann M; Best M; Wombacher R
    Methods Mol Biol; 2018; 1728():365-387. PubMed ID: 29405010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fluorophore ligase for site-specific protein labeling inside living cells.
    Uttamapinant C; White KA; Baruah H; Thompson S; Fernández-Suárez M; Puthenveetil S; Ting AY
    Proc Natl Acad Sci U S A; 2010 Jun; 107(24):10914-9. PubMed ID: 20534555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multicolor protein labeling in living cells using mutant β-lactamase-tag technology.
    Watanabe S; Mizukami S; Hori Y; Kikuchi K
    Bioconjug Chem; 2010 Dec; 21(12):2320-6. PubMed ID: 20961132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-guided engineering of a Pacific Blue fluorophore ligase for specific protein imaging in living cells.
    Cohen JD; Thompson S; Ting AY
    Biochemistry; 2011 Sep; 50(38):8221-5. PubMed ID: 21859157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-step protein labeling by using lipoic acid ligase with norbornene substrates and subsequent inverse-electron demand Diels-Alder reaction.
    Best M; Degen A; Baalmann M; Schmidt TT; Wombacher R
    Chembiochem; 2015 May; 16(8):1158-62. PubMed ID: 25900689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-specific protein labeling using PRIME and chelation-assisted click chemistry.
    Uttamapinant C; Sanchez MI; Liu DS; Yao JZ; Ting AY
    Nat Protoc; 2013 Aug; 8(8):1620-34. PubMed ID: 23887180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imaging trans-cellular neurexin-neuroligin interactions by enzymatic probe ligation.
    Liu DS; Loh KH; Lam SS; White KA; Ting AY
    PLoS One; 2013; 8(2):e52823. PubMed ID: 23457442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective covalent labeling of tag-fused GPCR proteins on live cell surface with a synthetic probe for their functional analysis.
    Nonaka H; Fujishima SH; Uchinomiya SH; Ojida A; Hamachi I
    J Am Chem Soc; 2010 Jul; 132(27):9301-9. PubMed ID: 20568758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directed evolution of a probe ligase with activity in the secretory pathway and application to imaging intercellular protein-protein interactions.
    White KA; Zegelbone PM
    Biochemistry; 2013 May; 52(21):3728-39. PubMed ID: 23614685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipoic Acid Ligase-Promoted Bioorthogonal Protein Modification and Immobilization.
    Plaks JG; Kaar JL
    Methods Mol Biol; 2019; 2012():279-297. PubMed ID: 31161513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging protein-protein interactions inside living cells via interaction-dependent fluorophore ligation.
    Slavoff SA; Liu DS; Cohen JD; Ting AY
    J Am Chem Soc; 2011 Dec; 133(49):19769-76. PubMed ID: 22098454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.