These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

455 related articles for article (PubMed ID: 18059274)

  • 1. Gate-induced insulating state in bilayer graphene devices.
    Oostinga JB; Heersche HB; Liu X; Morpurgo AF; Vandersypen LM
    Nat Mater; 2008 Feb; 7(2):151-7. PubMed ID: 18059274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Approaching ballistic transport in suspended graphene.
    Du X; Skachko I; Barker A; Andrei EY
    Nat Nanotechnol; 2008 Aug; 3(8):491-5. PubMed ID: 18685637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling the electronic structure of bilayer graphene.
    Ohta T; Bostwick A; Seyller T; Horn K; Rotenberg E
    Science; 2006 Aug; 313(5789):951-4. PubMed ID: 16917057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning molecular orbitals in molecular electronics and spintronics.
    Kim WY; Kim KS
    Acc Chem Res; 2010 Jan; 43(1):111-20. PubMed ID: 19769353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bipolar supercurrent in graphene.
    Heersche HB; Jarillo-Herrero P; Oostinga JB; Vandersypen LM; Morpurgo AF
    Nature; 2007 Mar; 446(7131):56-9. PubMed ID: 17330038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate-induced bandgap opening in epitaxial graphene.
    Zhou SY; Gweon GH; Fedorov AV; First PN; de Heer WA; Lee DH; Guinea F; Castro Neto AH; Lanzara A
    Nat Mater; 2007 Oct; 6(10):770-5. PubMed ID: 17828279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electro-oxidized epitaxial graphene channel field-effect transistors with single-walled carbon nanotube thin film gate electrode.
    Ramesh P; Itkis ME; Bekyarova E; Wang F; Niyogi S; Chi X; Berger C; de Heer W; Haddon RC
    J Am Chem Soc; 2010 Oct; 132(41):14429-36. PubMed ID: 20873843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature.
    Xia F; Farmer DB; Lin YM; Avouris P
    Nano Lett; 2010 Feb; 10(2):715-8. PubMed ID: 20092332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The conduction gap in double gate bilayer graphene structures.
    Nguyen VH; Bournel A; Dollfus P
    J Phys Condens Matter; 2010 Mar; 22(11):115304. PubMed ID: 21389462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Field-effect tunneling transistor based on vertical graphene heterostructures.
    Britnell L; Gorbachev RV; Jalil R; Belle BD; Schedin F; Mishchenko A; Georgiou T; Katsnelson MI; Eaves L; Morozov SV; Peres NM; Leist J; Geim AK; Novoselov KS; Ponomarenko LA
    Science; 2012 Feb; 335(6071):947-50. PubMed ID: 22300848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controllable chemical vapor deposition growth of few layer graphene for electronic devices.
    Wei D; Wu B; Guo Y; Yu G; Liu Y
    Acc Chem Res; 2013 Jan; 46(1):106-15. PubMed ID: 22809220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical and noise characteristics of graphene field-effect transistors: ambient effects, noise sources and physical mechanisms.
    Rumyantsev S; Liu G; Stillman W; Shur M; Balandin AA
    J Phys Condens Matter; 2010 Oct; 22(39):395302. PubMed ID: 21403224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Room-temperature high on/off ratio in suspended graphene nanoribbon field-effect transistors.
    Lin MW; Ling C; Zhang Y; Yoon HJ; Cheng MM; Agapito LA; Kioussis N; Widjaja N; Zhou Z
    Nanotechnology; 2011 Jul; 22(26):265201. PubMed ID: 21576804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly conducting graphene sheets and Langmuir-Blodgett films.
    Li X; Zhang G; Bai X; Sun X; Wang X; Wang E; Dai H
    Nat Nanotechnol; 2008 Sep; 3(9):538-42. PubMed ID: 18772914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymer electrolyte-gated organic field-effect transistors: low-voltage, high-current switches for organic electronics and testbeds for probing electrical transport at high charge carrier density.
    Panzer MJ; Frisbie CD
    J Am Chem Soc; 2007 May; 129(20):6599-607. PubMed ID: 17472381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemically enhanced double-gate bilayer graphene field-effect transistor with neutral channel for logic applications.
    Nourbakhsh A; Agarwal TK; Klekachev A; Asselberghs I; Cantoro M; Huyghebaert C; Heyns M; Verhelst M; Thean A; De Gendt S
    Nanotechnology; 2014 Aug; 25(34):345203. PubMed ID: 25101635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Opening an electrical band gap of bilayer graphene with molecular doping.
    Zhang W; Lin CT; Liu KK; Tite T; Su CY; Chang CH; Lee YH; Chu CW; Wei KH; Kuo JL; Li LJ
    ACS Nano; 2011 Sep; 5(9):7517-24. PubMed ID: 21819152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beyond the metal-insulator transition in polymer electrolyte gated polymer field-effect transistors.
    Dhoot AS; Yuen JD; Heeney M; McCulloch I; Moses D; Heeger AJ
    Proc Natl Acad Sci U S A; 2006 Aug; 103(32):11834-7. PubMed ID: 16873547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning orbital energetics in arylene diimide semiconductors. materials design for ambient stability of n-type charge transport.
    Jones BA; Facchetti A; Wasielewski MR; Marks TJ
    J Am Chem Soc; 2007 Dec; 129(49):15259-78. PubMed ID: 17999505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-gate bandgap opening of bilayer graphene by dual molecular doping.
    Park J; Jo SB; Yu YJ; Kim Y; Yang JW; Lee WH; Kim HH; Hong BH; Kim P; Cho K; Kim KS
    Adv Mater; 2012 Jan; 24(3):407-11. PubMed ID: 22161977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.