BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 18059496)

  • 21. Metabolic diversity of heterotrophic bacterioplankton over winter and spring in the coastal Arctic Ocean.
    Sala MM; Terrado R; Lovejoy C; Unrein F; Pedrós-Alió C
    Environ Microbiol; 2008 Apr; 10(4):942-9. PubMed ID: 18218033
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-organization of dissolved organic matter to micelle-like microparticles in river water.
    Kerner M; Hohenberg H; Ertl S; Reckermann M; Spitzy A
    Nature; 2003 Mar; 422(6928):150-4. PubMed ID: 12634782
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Imbalance between phytoplankton production and bacterial carbon demand in relation to mucilage formation in the Northern Adriatic Sea.
    Pugnetti A; Armeni M; Camatti E; Crevatin E; Dell'Anno A; Del Negro P; Milandri A; Socal G; Fonda Umani S; Danovaro R
    Sci Total Environ; 2005 Dec; 353(1-3):162-77. PubMed ID: 16229876
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The influence of Spartina maritima on carbon retention capacity in salt marshes from warm-temperate estuaries.
    Sousa AI; Lillebø AI; Pardal MA; Caçador I
    Mar Pollut Bull; 2010; 61(4-6):215-23. PubMed ID: 20304438
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Bacterial quantity and microbial reactivity in Tugur bay of the Okhotsk Sea].
    Dziuban AN
    Mikrobiologiia; 2003; 72(3):419-26. PubMed ID: 12901020
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of exposure to sunlight and phosphorus-limitation on bacterial degradation of coloured dissolved organic matter (CDOM) in freshwater.
    Kragh T; Søndergaard M; Tranvik L
    FEMS Microbiol Ecol; 2008 May; 64(2):230-9. PubMed ID: 18312374
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Allochthonous Carbon--a Major Driver of Bacterioplankton Production in the Subarctic Northern Baltic Sea.
    Figueroa D; Rowe OF; Paczkowska J; Legrand C; Andersson A
    Microb Ecol; 2016 May; 71(4):789-801. PubMed ID: 26677860
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Abiotic and biotic factors regulating dynamics of bacterioplankton in a large shallow lake.
    Kisand V; Nõges T
    FEMS Microbiol Ecol; 2004 Oct; 50(1):51-62. PubMed ID: 19712376
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Counterintuitive carbon-to-nutrient coupling in an Arctic pelagic ecosystem.
    Thingstad TF; Bellerby RG; Bratbak G; Børsheim KY; Egge JK; Heldal M; Larsen A; Neill C; Nejstgaard J; Norland S; Sandaa RA; Skjoldal EF; Tanaka T; Thyrhaug R; Töpper B
    Nature; 2008 Sep; 455(7211):387-90. PubMed ID: 18716617
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Estimation of long-term bacterial respiration and growth efficiency in Lake Kinneret.
    Berman T; Yacobi YZ; Parparov A; Gal G
    FEMS Microbiol Ecol; 2010 Mar; 71(3):351-63. PubMed ID: 20041950
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional and compositional succession of bacterioplankton in response to a gradient in bioavailable dissolved organic carbon.
    Dinasquet J; Kragh T; Schrøter ML; Søndergaard M; Riemann L
    Environ Microbiol; 2013 Sep; 15(9):2616-28. PubMed ID: 23827019
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Snowmelt-driven changes in dissolved organic matter and bacterioplankton communities in the Heilongjiang watershed of China.
    Qiu L; Cui H; Wu J; Wang B; Zhao Y; Li J; Jia L; Wei Z
    Sci Total Environ; 2016 Jun; 556():242-51. PubMed ID: 26974572
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Disinfection byproduct formation potentials of wetlands, agricultural drains, and rivers and the effect of biodegradation on trihalomethane precursors.
    Engelage SK; Stringfellow WT; Letain T
    J Environ Qual; 2009; 38(5):1901-8. PubMed ID: 19643756
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Strong indirect effects of a submersed aquatic macrophyte, Vallisneria americana, on bacterioplankton densities in a mesotrophic lake.
    Huss AA; Wehr JD
    Microb Ecol; 2004 May; 47(4):305-15. PubMed ID: 15037963
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differential response of high-elevation planktonic bacterial community structure and metabolism to experimental nutrient enrichment.
    Nelson CE; Carlson CA
    PLoS One; 2011 Mar; 6(3):e18320. PubMed ID: 21483836
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phosphorus use by planktonic communities in a large regulated Mediterranean river.
    Artigas J; Soley S; Pérez-Baliero MC; Romaní AM; Ruiz-González C; Sabater S
    Sci Total Environ; 2012 Jun; 426():180-7. PubMed ID: 22503678
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Elevated pCO2 enhances bacterioplankton removal of organic carbon.
    James AK; Passow U; Brzezinski MA; Parsons RJ; Trapani JN; Carlson CA
    PLoS One; 2017; 12(3):e0173145. PubMed ID: 28257422
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dissolved organic carbon as major environmental factor affecting bacterioplankton communities in mountain lakes of eastern Japan.
    Fujii M; Kojima H; Iwata T; Urabe J; Fukui M
    Microb Ecol; 2012 Apr; 63(3):496-508. PubMed ID: 22109097
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dissolved primary production and the strength of phytoplankton- bacterioplankton coupling in contrasting marine regions.
    Morán XA; Estrada M; Gasol JM; Pedrós-Alió C
    Microb Ecol; 2002 Oct; 44(3):217-23. PubMed ID: 12209254
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polymerized coumaric acid as a model substrate for terrestrial-derived dissolved organic carbon utilized by aquatic microorganisms.
    Tittel J; Poerschmann J; Wannicke N; Kamjunke N
    J Microbiol Methods; 2008 Jun; 73(3):237-41. PubMed ID: 18400319
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.