These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 18059496)

  • 41. Heterotrophic microbial activity and organic matter degradation in coastal lagoons of Colombia.
    Gocke K; Mancera Pineda JE; Vallejo A
    Rev Biol Trop; 2003 Mar; 51(1):85-98. PubMed ID: 15162684
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Viruses in the plankton of the Rybinsk Reservoir].
    Kopylov AI; Kosolapov DB; Zabotkina EA
    Mikrobiologiia; 2007; 76(6):879-87. PubMed ID: 18297881
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evidence for structuring of bacterial community composition by organic carbon source in temperate lakes.
    Jones SE; Newton RJ; McMahon KD
    Environ Microbiol; 2009 Sep; 11(9):2463-72. PubMed ID: 19558514
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Denitrification potential and its relation to organic carbon quality in three coastal wetland soils.
    Dodla SK; Wang JJ; DeLaune RD; Cook RL
    Sci Total Environ; 2008 Dec; 407(1):471-80. PubMed ID: 18848345
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bacterial activity and bacterioplankton diversity in the eutrophic River Warnow--direct measurement of bacterial growth efficiency and its effect on carbon utilization.
    Warkentin M; Freese HM; Schumann R
    Microb Ecol; 2011 Jan; 61(1):190-200. PubMed ID: 20676625
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Responses of lake bacterioplankton activities and composition to the herbicide diuron.
    Tadonléké RD; Leberre B; Perreau F; Humbert JF
    Aquat Toxicol; 2009 Aug; 94(2):103-13. PubMed ID: 19586668
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The combination of different carbon sources enhances bacterial growth efficiency in aquatic ecosystems.
    Fonte ES; Amado AM; Meirelles-Pereira F; Esteves FA; Rosado AS; Farjalla VF
    Microb Ecol; 2013 Nov; 66(4):871-8. PubMed ID: 23963223
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Exploring bacteriplankton growth and protein synthesis to determine conversion factors across a gradient of dissolved organic matter.
    Pulido-Villena E; Reche I
    Microb Ecol; 2003 Jul; 46(1):33-42. PubMed ID: 14582496
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Concentrations and fluxes of organic carbon substrates in the aquatic environment.
    Münster U
    Antonie Van Leeuwenhoek; 1993; 63(3-4):243-74. PubMed ID: 8279823
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Single-cell vs. bulk activity properties of coastal bacterioplankton over an annual cycle in a temperate ecosystem.
    Morán XA; Calvo-Díaz A
    FEMS Microbiol Ecol; 2009 Jan; 67(1):43-56. PubMed ID: 19120458
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Tracking differential incorporation of dissolved organic carbon types among diverse lineages of Sargasso Sea bacterioplankton.
    Nelson CE; Carlson CA
    Environ Microbiol; 2012 Jun; 14(6):1500-16. PubMed ID: 22507662
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Disturbance legacies increase and synchronize nutrient concentrations and bacterial productivity in coastal ecosystems.
    Kominoski JS; Gaiser EE; Castañeda-Moya E; Davis SE; Dessu SB; Julian P; Lee DY; Marazzi L; Rivera-Monroy VH; Sola A; Stingl U; Stumpf S; Surratt D; Travieso R; Troxler TG
    Ecology; 2020 May; 101(5):e02988. PubMed ID: 31958144
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bacterial growth and DOC consumption in a tropical coastal lagoon.
    Farjalla VF; Enrich-Prast A; Esteves FA; Cimbleris AC
    Braz J Biol; 2006 May; 66(2A):383-92. PubMed ID: 16862291
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biodegradation of natural organic matter in long-term, continuous-flow experiments simulating artificial ground water recharge for drinking water production.
    Kolehmainen RE; Kortelainen NM; Langwaldt JH; Puhakka JA
    J Environ Qual; 2009; 38(1):44-52. PubMed ID: 19141794
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Indirect link between riverine dissolved organic matter and bacterioplankton respiration in a boreal estuary.
    Soares ARA; Berggren M
    Mar Environ Res; 2019 Jun; 148():39-45. PubMed ID: 31078961
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dissolved organic carbon losses from tile drained agroecosystems.
    Ruark MD; Brouder SM; Turco RF
    J Environ Qual; 2009; 38(3):1205-15. PubMed ID: 19398518
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Heterotrophic activities of bacterioneuston and bacterioplankton.
    Dietz AS; Albright LJ; Tuominen T
    Can J Microbiol; 1976 Dec; 22(12):1699-709. PubMed ID: 1009500
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Relationship between bacterioplankton richness, respiration, and production in the Southern North Sea.
    Reinthaler T; Winter C; Herndl GJ
    Appl Environ Microbiol; 2005 May; 71(5):2260-6. PubMed ID: 15870310
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [The rate of growth and the production of bacterioplankton in the Volga].
    Tarasova TN
    Mikrobiologiia; 1976; 45(6):1082-6. PubMed ID: 138069
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Influence of vegetation and substrate on the removal and transformation of dissolved organic matter in horizontal subsurface-flow constructed wetlands.
    Li J; Wen Y; Zhou Q; Xingjie Z; Li X; Yang S; Lin T
    Bioresour Technol; 2008 Jul; 99(11):4990-6. PubMed ID: 17964141
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.