These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

30 related articles for article (PubMed ID: 18059564)

  • 1. Oxalate production by Sclerotinia sclerotiorum deregulates guard cells during infection.
    Guimarães RL; Stotz HU
    Plant Physiol; 2004 Nov; 136(3):3703-11. PubMed ID: 15502012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Advances of Oxalate Decarboxylase: Biochemical Characteristics, Catalysis Mechanisms, and Gene Expression and Regulation.
    Zan X; Yan Y; Chen G; Sun L; Wang L; Wen Y; Xu Y; Zhang Z; Li X; Yang Y; Sun W; Cui F
    J Agric Food Chem; 2024 May; 72(18):10163-10178. PubMed ID: 38653191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Oxalyl-CoA Dependent Pathway of Oxalate Catabolism Plays a Role in Regulating Calcium Oxalate Crystal Accumulation and Defending against Oxalate-Secreting Phytopathogens in Medicago truncatula.
    Foster J; Luo B; Nakata PA
    PLoS One; 2016; 11(2):e0149850. PubMed ID: 26900946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of monomethoxy polyethyleneglycol-modified oxalate decarboxylase by response surface methodology.
    Long H; Cai X; Yang H; He J; Wu J; Lin R
    J Biol Phys; 2017 Sep; 43(3):445-459. PubMed ID: 28780598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of oxalyl-CoA decarboxylase (oxc) and formyl-CoA transferase (frc) genes in novel probiotic isolates capable of oxalate degradation in vitro.
    Youssef HIA
    Folia Microbiol (Praha); 2024 Apr; 69(2):423-432. PubMed ID: 38217756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of plant protection against two oxalate-producing fungal pathogens by oxalotrophic strains of Stenotrophomonas spp.
    Marina M; Romero FM; Villarreal NM; Medina AJ; Gárriz A; Rossi FR; Martinez GA; Pieckenstain FL
    Plant Mol Biol; 2019 Aug; 100(6):659-674. PubMed ID: 31187392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial Community Analysis Provides Insights into the Effects of Tetrahydrofuran on 1,4-Dioxane Biodegradation.
    Xiong Y; Mason OU; Lowe A; Zhou C; Chen G; Tang Y
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30926731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and analysis of MKK and MPK gene families in canola (Brassica napus L.).
    Liang W; Yang B; Yu BJ; Zhou Z; Li C; Jia M; Sun Y; Zhang Y; Wu F; Zhang H; Wang B; Deyholos MK; Jiang YQ
    BMC Genomics; 2013 Jun; 14():392. PubMed ID: 23758924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxalate, germins, and higher-plant pathogens.
    Lane BG
    IUBMB Life; 2002 Feb; 53(2):67-75. PubMed ID: 12049198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The enzymes of oxalate metabolism: unexpected structures and mechanisms.
    Svedruzić D; Jónsson S; Toyota CG; Reinhardt LA; Ricagno S; Lindqvist Y; Richards NG
    Arch Biochem Biophys; 2005 Jan; 433(1):176-92. PubMed ID: 15581576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induction of oxalate decarboxylase by oxalate in a newly isolated Pandoraea sp. OXJ-11 and its ability to protect against Sclerotinia sclerotiorum infection.
    Jin ZX; Wang C; Chen W; Chen X; Li X
    Can J Microbiol; 2007 Dec; 53(12):1316-22. PubMed ID: 18059564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and some properties of newly isolated oxalate-degrading Pandoraea sp. OXJ-11 from soil.
    Jin ZX; Wang C; Dong W; Li X
    J Appl Microbiol; 2007 Oct; 103(4):1066-73. PubMed ID: 17897211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of nutritional supplements and monosaccharides on growth, oxalate accumulation, and culture pH by Sclerotinia sclerotiorum.
    Culbertson BJ; Furumo NC; Daniel SL
    FEMS Microbiol Lett; 2007 May; 270(1):132-8. PubMed ID: 17355598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of anti-sclerotinia scFv in transgenic Brassica napus enhances tolerance against stem rot.
    Yajima W; Verma SS; Shah S; Rahman MH; Liang Y; Kav NN
    N Biotechnol; 2010 Dec; 27(6):816-21. PubMed ID: 20933110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteome changes in leaves of Brassica napus L. as a result of Sclerotinia sclerotiorum challenge.
    Liang Y; Srivastava S; Rahman MH; Strelkov SE; Kav NN
    J Agric Food Chem; 2008 Mar; 56(6):1963-76. PubMed ID: 18290614
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.