BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 18059615)

  • 1. Role of AMPK in skeletal muscle gene adaptation in relation to exercise.
    Jørgensen SB; Jensen TE; Richter EA
    Appl Physiol Nutr Metab; 2007 Oct; 32(5):904-11. PubMed ID: 18059615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of AMP-activated protein kinase in the molecular adaptation to endurance exercise.
    Winder WW; Taylor EB; Thomson DM
    Med Sci Sports Exerc; 2006 Nov; 38(11):1945-9. PubMed ID: 17095928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of glucose transport by the AMP-activated protein kinase.
    Fujii N; Aschenbach WG; Musi N; Hirshman MF; Goodyear LJ
    Proc Nutr Soc; 2004 May; 63(2):205-10. PubMed ID: 15294031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of AMPK in skeletal muscle metabolic regulation and adaptation in relation to exercise.
    Jørgensen SB; Richter EA; Wojtaszewski JF
    J Physiol; 2006 Jul; 574(Pt 1):17-31. PubMed ID: 16690705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of AMPK in controlling metabolism and mitochondrial biogenesis during exercise.
    Marcinko K; Steinberg GR
    Exp Physiol; 2014 Dec; 99(12):1581-5. PubMed ID: 25261498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AMP kinase in exercise adaptation of skeletal muscle.
    Jessen N; Sundelin EI; Møller AB
    Drug Discov Today; 2014 Jul; 19(7):999-1002. PubMed ID: 24637044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 5'-AMP-activated protein kinase activity and protein expression are regulated by endurance training in human skeletal muscle.
    Frøsig C; Jørgensen SB; Hardie DG; Richter EA; Wojtaszewski JF
    Am J Physiol Endocrinol Metab; 2004 Mar; 286(3):E411-7. PubMed ID: 14613924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AMPKα is essential for acute exercise-induced gene responses but not for exercise training-induced adaptations in mouse skeletal muscle.
    Fentz J; Kjøbsted R; Kristensen CM; Hingst JR; Birk JB; Gudiksen A; Foretz M; Schjerling P; Viollet B; Pilegaard H; Wojtaszewski JF
    Am J Physiol Endocrinol Metab; 2015 Dec; 309(11):E900-14. PubMed ID: 26419588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How is AMPK activity regulated in skeletal muscles during exercise?
    Jorgensen SB; Rose AJ
    Front Biosci; 2008 May; 13():5589-604. PubMed ID: 18508608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation.
    Zong H; Ren JM; Young LH; Pypaert M; Mu J; Birnbaum MJ; Shulman GI
    Proc Natl Acad Sci U S A; 2002 Dec; 99(25):15983-7. PubMed ID: 12444247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction between the AMP-activated protein kinase and mTOR signaling pathways.
    Kimball SR
    Med Sci Sports Exerc; 2006 Nov; 38(11):1958-64. PubMed ID: 17095930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AMPK regulation of fatty acid metabolism and mitochondrial biogenesis: implications for obesity.
    O'Neill HM; Holloway GP; Steinberg GR
    Mol Cell Endocrinol; 2013 Feb; 366(2):135-51. PubMed ID: 22750049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of calcium and AMP kinase in the regulation of mitochondrial biogenesis and GLUT4 levels in muscle.
    Ojuka EO
    Proc Nutr Soc; 2004 May; 63(2):275-8. PubMed ID: 15294043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AMP-activated protein kinase: a key system mediating metabolic responses to exercise.
    Hardie DG
    Med Sci Sports Exerc; 2004 Jan; 36(1):28-34. PubMed ID: 14707764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AMP kinase expression and activity in human skeletal muscle: effects of immobilization, retraining, and creatine supplementation.
    Eijnde BO; Derave W; Wojtaszewski JF; Richter EA; Hespel P
    J Appl Physiol (1985); 2005 Apr; 98(4):1228-33. PubMed ID: 15516364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracellular signalling pathways regulating the adaptation of skeletal muscle to exercise and nutritional changes.
    Matsakas A; Patel K
    Histol Histopathol; 2009 Feb; 24(2):209-22. PubMed ID: 19085837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expanding roles for AMPK in skeletal muscle plasticity.
    Mounier R; Théret M; Lantier L; Foretz M; Viollet B
    Trends Endocrinol Metab; 2015 Jun; 26(6):275-86. PubMed ID: 25818360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exercise-induced AMPK activation does not interfere with muscle hypertrophy in response to resistance training in men.
    Lundberg TR; Fernandez-Gonzalo R; Tesch PA
    J Appl Physiol (1985); 2014 Mar; 116(6):611-20. PubMed ID: 24408998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide increases GLUT4 expression and regulates AMPK signaling in skeletal muscle.
    Lira VA; Soltow QA; Long JH; Betters JL; Sellman JE; Criswell DS
    Am J Physiol Endocrinol Metab; 2007 Oct; 293(4):E1062-8. PubMed ID: 17666490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exercise-induced AMPK activity in skeletal muscle: role in glucose uptake and insulin sensitivity.
    Friedrichsen M; Mortensen B; Pehmøller C; Birk JB; Wojtaszewski JF
    Mol Cell Endocrinol; 2013 Feb; 366(2):204-14. PubMed ID: 22796442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.